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Abstract

Previous work has predominantly focused on

monolingual English semantic parsing. We, in-

stead, explore the feasibility of Chinese seman-

tic parsing in the absence of labeled data for

Chinese meaning representations. We describe

the pipeline of automatically collecting the lin-

earized Chinese meaning representation data

for sequential-to-sequential neural networks.

We further propose a test suite designed explic-

itly for Chinese semantic parsing, which pro-

vides fine-grained evaluation for parsing perfor-

mance, where we aim to study Chinese parsing

difficulties. Our experimental results show that

the difficulty of Chinese semantic parsing is

mainly caused by adverbs. Realizing Chinese

parsing through machine translation and an En-

glish parser yields slightly lower performance

than training a model directly on Chinese data.

1 Introduction

Semantic parsing is the task of transducing natural

language text into semantic representations, which

are expressed in logical forms underlying various

grammar formalisms, such as abstract meaning rep-

resentations (AMR, Wang et al. 2020; Bevilacqua

et al. 2021), minimal recursion semantics (MRS,

Horvat et al. 2015), and Discourse Representation

Theory (DRT, Kamp and Reyle 1993). In this

work, we explore the feasibility of parsing Chinese

text to semantic representation based on Discourse

Representation Structures (DRSs, Bos 2015a; van

Noord et al. 2018), which are meaning represen-

tations proposed from DRT, a recursive first-order

logic representation comprising of discourse refer-

ents (the entities introduced in the discourse) and

relations between them.

Several neural parsers for DRS have been re-

cently developed (Fancellu et al., 2019; Evang,

2019; van Noord et al., 2019; Liu et al., 2019; Wang

et al., 2021; van Noord et al., 2020a) and reached

remarkable performance, but mostly focused on

monolingual English or some language using the

Latin alphabet. Meaning representations are con-

sidered to be language-neutral, and texts with the

same semantics but in different languages have

the same meaning representation. The literature

presents several examples of parsing multilingual

text by training on monolingual English semantic

representations (Ribeiro et al., 2021).

For the reason of relatively limited amounts of

labeled gold-standard multilingual meaning repre-

sentation data, multilingual text parsing relies on

the source of silver English meaning representation

data. As long as the meanings are expressed in

a language-neutral way, this is a valid approach.

However, named entities aren’t usually, because

they can (a) have different orthography for differ-

ent languages using the same alphabet (in particular

for location names, e.g., Berlin, Berlijn, Berlino,

Berlynas) or (b) be written with a completely dif-

ferent character set, as is the case for Chinese.

Figure 1 shows a (nearly) language-neutral

meaning representation for a simple English sen-

tence. For non-English Latin alphabet languages,

the named entities in the text are usually consis-

tent with English, and the meaning in the form of

a graph structure of the corresponding Discourse

Representation (Discourse Representation Graph,

DRG) would be identical to these languages (Bos,

2021), as shown in Figure 1. However, it would

be rather absurd to expect a semantic parser for

Chinese to produce meaning representations (with

interlingual WordNet synsets) where proper names

are anchored using the Latin alphabet using English

(or any other language for that matter) orthogra-

phy. We need to keep this important aspect in mind

when evaluating semantic parsers for languages

other than English.

However, for non-Latin alphabet languages, such

as the widely used language of Chinese, is it fea-

sible to use English meaning representation as the

meaning representation of Chinese? Our objective
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is to investigate whether Chinese semantic pars-

ing can achieve the same performance as English

semantic parsing while using the same amount of

data. We try to investigate whether it is necessary to

develop a dedicated parser for Chinese, or whether

it is possible to achieve a similar performance using

an English parser by leveraging machine transla-

tion (MT) on Chinese. We provide inexpensively

acquired silver-standard Chinese DRS data to im-

plement our exploration: (1) We collect Chinese

and English aligned texts from the Parallel Mean-

ing Bank (PMB, Abzianidze et al. 2017), which

provides parallel multilingual corpora including

corresponding English meaning representation ex-

pressed in DRSs. (2) We leverage GIZA++ (Och

and Ney, 2003) to align the word-segmented Chi-

nese and English to obtain Chinese-English named

entity alignment pairs, the resulting named entities

are used to replace the named entities in our English

semantic representation. (3) We train two monolin-

gual parsers on the two languages separately, and

then provide a set of fine-grained evaluation met-

rics to make better comparison between parsers.

We aim to answer the following questions:

1. Can existing DRS parsing models achieve

good results for Chinese? (RQ1)

2. What are the difficulties in semantic parsing

for Chinese? (RQ2)

3. Is it feasible to use machine translation and

an English parser to parse Chinese? How is it

different from designing a special parser for

Chinese? (RQ3)

4. How to conduct more fine-grained evaluation

of experimental results and reduce the work-

load of manual evaluation? (RQ4)

2 Background

2.1 Discourse Representation Structure

DRS, as a kind of formal meaning representation,

can be used to represent the semantic meaning of

sentences and discourse. For the wide coverage

of linguistic phenomena at quantification, nega-

tion, reference resolution, comparatives, discourse

relations, and presupposition, DRT and DRS pos-

sess stronger semantic representation power than

AMR. A DRS comprises discourse referents and

conditions. However, some variants of DRS for-

mats have been introduced in recent years, the for-

mat we employ throughout our work being one

(a)

Mary

≺

Time
ThemeAgent

Recipient

Name

time.n.08

male.n.02

engagement.n.01

female.n.02

break.v.01

now

User

Name

Tom

(b) male.n.02 Name "Tom" 

break.v.01 Agent -1 Time +1 Theme +3 

time.n.08 TPR now 

male.n.02 EQU -3 

engagement.n.01 User -1 Recipient +1 

female.n.02 Name "Mary”

(c) EN: Tom broke off his engagement to Mary.

DE: Tom löste seine Verlobung mit Mary auf.

ZH:汤姆与玛丽解除了婚约。

Figure 1: DRS in (a) graph format, (b) sequential box

notation and (c) corresponding multilingual texts for

English, German and Chinese.

of them. We use a simplified DRS, which can be

called Discourse Representation Graph (DRG) or

Simplified Box Notation (SBN; Bos 2021). It dis-

cards explicit discourse references and variables

while maintaining the same expressive power, as

shown in Figure 2.

As introduced by Bos (2021), DRS allows two

kinds of representations: graph and sequential

notation (Figure 1). There are five types of se-

mantic information involved in DRS: concepts

(read.v.01, paper.n.02, new.a.01, ...), roles

(Agent, Theme, Time, ...), constants (speaker,

hearer, now, ...), comparison operators (=,

≺, ∼, ...) and discourse relations (NEGATION,

CONTINUATION, CONTRAST, ...), where concepts

and roles are represented by WordNet synsets (Fell-

baum, 2000) and VerbNet thematic relations (Kip-

per et al., 2006) respectively.

2.2 DRS parsing

DRS parsing was originally applied to English and

has been continuously extended to other Latin lan-

guages. Initially, rule-based systems were predomi-

nantly utilized by early parsers for analyzing small

English texts (Johnson and Klein, 1986; Asher and

Wada, 1988; Bos, 2004, 2008, 2015b). The first

version of GMB (Basile et al., 2012) which pro-



Boston

=

Time

Duration

Quantity

Location

Name

time.n.08male.n.02

spend.v.01

city.n.01

now

Agent

Name

Tom

¬ 

time.n.03

+

Figure 2: An example of a DRG with negation for sen-

tence: "Tom doesn’t spend much time in Boston."

vides English texts with DRS, is built on Boxer

(Bos, 2008). With the release of PMB (Abzian-

idze et al., 2017) and the propose of the first shared

tasks (Abzianidze et al., 2019), related research

keeps growing, with a focus on deep learning mod-

els (Evang, 2019; Fancellu et al., 2019; van Noord

et al., 2018, 2020a; Liu et al., 2019). The target lan-

guages have also expanded to other languages: Ger-

man, Italian, Dutch and Chinese (Shen and Evang,

2022; Poelman et al., 2022a; Wang et al., 2021;

Liu et al., 2021). Translation has been utilized in

two manners when dealing with cross-lingual pars-

ing: the first involves translating other languages

into English and then employing an English parser,

while the second involves translating English into

other languages and training a parser specific to

that language (Liu et al., 2021). In this paper, we

use the existing Chinese-English parallel corpus to

design a specific parser for Chinese, and compare

the performance of the parser with the first method.

3 Data Creation

In previous work, for non-English parsing tasks,

the semantic representation of English is usually

directly used as the semantic representation of the

target language, but most of these works focus

on Latin languages (Fancellu et al., 2019; Ribeiro

et al., 2021). For non-Latin languages such as Chi-

nese, named entities are not language-neutral, as

illustrated in the work of Wang et al. (2021), and

are quite different from named entities in English

texts. To design a more reasonable Chinese parser,

we first focus on replacing the named entities in

the English semantic representation with Chinese,

so that the parser can parse out the Chinese named

entities corresponding to the text content according

to different texts.

To achieve our goal, we use the data of PMB, the

largest parallel corpus of DRS data available, as

our experimental object. From the PMB, English-

Chinese parallel texts and DRS data for English

texts are collected. Based on that, we propose a

pipeline to obtain Chinese DRS for Chinese text.

Our pipeline has three steps: (1) using tokenizers

tools to segment Chinese and English text data;

(2) utilizing the English-Chinese alignment tool

to obtain the alignment tokens between Chinese

and English texts; (3) replacing named entities in

English DRS with Chinese named entities. Figure 3

shows our processing pipeline.

3.1 Text Tokenizers

Preprocessing data with a tokenizer is an impor-

tant step in the pipeline because the alignment of

Chinese and English texts needs to act on the data

after tokenization. At the same time, since the

quality of upstream results directly affects down-

stream performance, the quality of text segmenta-

tion also directly affects the correctness of Chinese

and English text alignment. In this work, we use

Moses (Koehn et al., 2007) for English, which is

advanced and widely used. It is a collection of

complex normalization and segmentation logic that

works very well for structured languages like En-

glish. For Chinese, we choose HanLP (He and

Choi, 2021), which is an efficient, user-friendly

and extendable tokenizer. Different from a widely

used Jieba tokenizer, HanLP is based on the CRF al-

gorithm. It takes into account word frequency and

context at the same time, and can better identify

ambiguous words and unregistered words.

3.2 English-Chinese Alignment

In order to realize the replacement of named enti-

ties in English semantic representation with Chi-

nese named entities, it is very important to ob-

tain the correct alignment of Chinese and English

texts, especially the alignment of named entities

in the two texts. In order to quickly and effec-

tively obtain the alignment data in Chinese and En-

glish, we choose the GIZA++ word aligning tool.

GIZA++ is the most popular statistical alignment

and MT toolkit (Och and Ney, 2000), which imple-

ments the lexical translation models of Brown et al.

(1993) (IBM Models), and the Hidden-Markov



male.n.02 Name "Yunus"

found.v.01 Agent -1 Theme +2 Time +5 

time.n.08 TPR now 

company.n.01 Name "Grameen Bank" 

quantity.n.01 EQU 30

year.n.01 Quantity -1 TAB now 

time.n.08 TIN -4 TAB -1 

(a) Yunus founded the Grameen Bank 30 years ago .
NULL ({ 3 }) 尤努斯 ({ 1 }) 30 ({ 6 }) 年 ({ 7 }) 前 ({ 8 }) 创⽴ ({ 2 }) 了 ({ }) 格莱美 ({ 4 }) 银⾏ ({ 5 }) 。 ({ 9 })

% Yunus [1]

% founded [2]

%

% the Grameen Bank [3-5]

% 30 [6]

% years [7]

% ago . [8-9]

(b) Yunus: 尤努斯
Grameen Bank: 格莱美银⾏

(c)
male.n.02 Name "尤努斯" "

found.v.01 Agent -1 Theme +2 Time +5 

time.n.08 TPR now 

company.n.01 Name "格莱美银⾏" 

quantity.n.01 EQU 30

year.n.01 Quantity -1 TAB now 

time.n.08 TIN -4 TAB -1 

Figure 3: (a) Alignment tokens obtained by GIZA++ tool for English ("Yunus founded the Grameen Bank 30 years

ago.") and Chinese ("尤努斯30年前创立了格莱美银行。"), (b) aligned named entities dictionary in above texts,

(c) same meaning representations with different named entities for English text and Chinese text respectively.

alignment Model (Vogel et al., 1996), trained using

expectation-maximization (EM). GIZA++ is highly

effective at aligning frequent words in a corpus, but

error-prone for infrequent words.

3.3 Replacing Named Entities

The last step to obtain the Chinese semantic rep-

resentation is to replace the named entities in the

English DRS with Chinese named entities. First,

the English named entities in DRS data can be eas-

ily obtained according to the edge types between

two nodes. When the edge type is Name, the output

nodes are named entities in the DRG. After process-

ing the Chinese and English texts with the GIZA++

tool in the second step, we can obtain alignment to-

kens between Chinese and English. On this basis, a

named entity alignment dictionary can be obtained,

and then the English named entities in the DRS

data can be replaced with Chinese named entities

based on this dictionary.

4 Methodology

4.1 Neural Models

We adopt Recurrent Neural Networks (RNN)

equipped with Long Short-Term Memory units

(LSTM; Hochreiter and Schmidhuber 1997) as our

baseline models. Following the work of van Noord

et al. (2020b), we use frozen mBERT (Devlin et al.,

2019) embeddings to initialize the encoder. An

attention-based LSTM architecture is used for the

decoder, where the attention memory is the con-

catenation of the attention vectors among all the

input tokens. In addition, the copy mechanism (Gu

et al., 2016; Gulcehre et al., 2016) is added to the

decoder, which can integrate the attention distri-

bution into the final vocabulary distribution. The

copy mechanism favors copying tokens from the

source text into the target text instead of generating

all target tokens only from the target vocabulary.

4.2 Evaluation

Given a document to the DRS parser, it will gener-

ate variable-free sequential notation DRS as shown

in Figure 1(b). The evaluation tool for DRS pars-

ing task was recently proposed by Poelman et al.

(2022b) and is based on the AMR standard eval-

uation tool Smatch (Cai and Knight, 2013). By

converting a sequential DRS into DRG, Penman no-

tation format data (Kasper, 1989) can be obtained,

as shown in Figure 4 (b), and then Smatch can be

used to compute F-scores based on matching triples

between system output and gold meanings.

However, we note that the scores given by the

above evaluation tool have two flaws: (1) the eval-

uation scores are too inflated, and it is difficult

to detect the differences between different parsers.

(2) the evaluation tool only gives an overall score

without evaluating the different types of constituent

elements in the DRS, it is difficult to quantitatively

determine what is the difficulty of the parser in the

parsing process. Based on that, we propose to com-

press evaluation scores to improve the above eval-

uation methods and further propose fine-grained

evaluation metrics for different subtasks according

to different types of components in DRS.

4.2.1 Overall Evaluation

Our improvement strategy is mainly aimed at the

representation of the Penman format of DRG. We

mainly improve on two points, one is WordNet

synsets representation, and the other is constants

representation.

In the previous evaluation method, the WordNet



(b) ((b0 / "box"

:member (s0 / "sense"

:lemma "male"

:pos "n"

:sense "02"

:Name (c0 / "汤姆"))

:member (s1 / "sense"

:lemma "sit"

:pos "v"

:sense "03"

:Agent s0

:Time (s2 / "sense"

:lemma "time"

:pos "n"

:sense "08"

:TPR (c1 / "now"))

:Location (s3 / "sense"

:lemma "log"

:pos "n"

:sense "01"))

:member s2

:member s3)

(c) (b0 / "box"

:member (s0 / "male.n.02"

:Name "汤姆")

:member (s1 / "sit.v.01"

:Agent s0

:Time (s2 / "time.n.08"

:TPR "now")

:Location (s3 / "log.n.01"))

:member s2

:member s3)

(a)

≺

Time
LocationAgent

time.n.08male.n.02

log.n.01

sit.v.01

now

Name

汤姆

Figure 4: (a) Graph structured DRS for Chinese sentence:"汤姆坐在一根圆木上。". (b) Penman format of DRG

with fine-grained WordNet synsets used for evaluation (Poelman et al., 2022b). (c) Penman format of DRG with

coarse-grained WordNet synsets used for evaluation (Ours).

synsets in Penman format are fine-grained during

the evaluation process, and the WordNet synsets

are divided into three parts (lemma, pos, number)

according to their constituents. On this basis, even

if the parser generates wrong concepts, such as

time.n.08 and time.n.01, the Smatch still ob-

tains a similar inflated F1 score. To this end, we

change the WordNet synsets in the Penman for-

mat to a coarse-grained representation to strictly

evaluate WordNet synsets qualities generated by

parsers, as shown in Figure 4 (c). In addition, we

have also modified the constant representation in

Penmen format, such as the constant now shown in

the figure, because the variable c is added to the

constant, making the triples in Penman format re-

dundant, which also makes the F1-score higher to a

certain extent. By omitting the c variable as shown

in Figure 4 (c), we further compress the F1-score.

4.2.2 Fine-grained Evaluation

To evaluate the quality of specific subtasks in DRS

parsing, we imitate the fine-grained metrics for

AMR parsing task (Damonte et al., 2017; Zhang

et al., 2019) to DRS parsing. In order to make them

compatible with DRS, we make some changes

based on the data characteristics of DRS. Our fine-

grained metrics consist of three categories in total:

graph-level, node-level and edge-level. Each cat-

egory includes more fine-grained evaluation met-

rics. All the metrics are proposed based on the

semantic information types involved in DRS (see

Section 2.1).

In graph-level evaluation, No Roles, No

Discourse, No Operators and No Senses are

used to represent the Smatch scores of the DRG in

Penman format ignoring Roles, Discourse, Oper-

ators and Senses respectively. In theory, they are

Smatch’s coarse-grained scores, which are higher

than the original Smatch scores.

In node-level evaluation, we compute F-score

on the list of parsed information types (such as

roles, constants, and discourse relations) instead

of using Smatch. Note that different from the met-

rics in the AMR parsing task, concepts in DRS

are represented by WordNet synsets, so Concepts

can be evaluated more finely by part-of-speech

(noun, adjective, adverb and verb). Discourse

detects all discourse relation labels except NEGA-

TION since it is more common and specific in DRS

than other discourse relations labels, the Negation

metric is used for evaluation to detect NEGATION

edge label alone. In addition, Member metric is

added to evaluate the ratio of the generated con-

cepts. In DRG, member represents the edge label



Alignment Error Data Type Example

Dislocation

Chinese 梅尔·卡玛津是天狼星的执行官。
English Mel Karmazin is an executive of Sirius .

Wrong male.n.02 Name "梅尔·卡玛津" be.v.08 Theme -1 Time +1 Co-Theme +2

time.n.08 EQU now person.n.01 Role +1 executive.n.01 Of +1 company.n.01

Name "执行官"

Corrected male.n.02 Name "梅尔·卡玛津" be.v.08 Theme -1 Time +1 Co-Theme +2

time.n.08 EQU now person.n.01 Role +1 executive.n.01 Of +1 company.n.01

Name "天狼星"

Character Exclusion

Chinese 什么乐队唱了 ª快乐在一起 º这首歌？
English What group sang the song " Happy Together " ?

Wrong group.n.01 Name ? sing.v.02 Agent -1 Time +1 Theme +2 time.n.08 TPR now

song.n.01 EQU +1 music.n.01 Name "快乐一起"

Corrected group.n.01 Name ? sing.v.02 Agent -1 Time +1 Theme +2 time.n.08 TPR now

song.n.01 EQU +1 music.n.01 Name "快乐在一起"

Character Inclusion

Chinese 卢瑟福·海斯 1822年出生于俄亥俄州。
English Rutherford Hayes was born in Ohio in 1822 .

Wrong male.n.02 Name "卢瑟福·海斯1822" time.n.08 TPR now bear.v.02 Patient -2

Location +1 Time +2 state.n.01 Name "俄亥俄州" time.n.08 YearOfCentury 1822

TIN -3

Corrected male.n.02 Name "卢瑟福·海斯" time.n.08 TPR now bear.v.02 Patient -2 Location

+1 Time +2 state.n.01 Name "俄亥俄州" time.n.08 YearOfCentury 1822 TIN -3

Nationality

Chinese 我不是爱尔兰人。
English I am not Irish .

Wrong person.n.01 EQU speaker NEGATION <1 time.n.08 EQU now be.v.03 Theme -2

Time -1 Source +1 country.n.02 Name ""

Corrected person.n.01 EQU speaker NEGATION <1 time.n.08 EQU now be.v.03 Theme -2

Time -1 Source +1 country.n.02 Name "ireland"

Table 1: Alignment errors illustrated by four examples. In Chinese and English texts, words of the same color

indicate correct alignment between them. Inbformation marked in red is the wrong named entity obtained by the

GIZA++ tool. Text in green indicates the correct named entity in the corrected DRS.

connecting the BOX node and the concepts node,

i.e., the dashed line as shown in Figure 4 (a).

For edge-level evaluation, we focus on calculat-

ing the F-score based on the number of matching

triples in the parsed DRG and the gold DRG. For

example, Names in edge-level is a metric that con-

siders the relations between concepts nodes and

named entities, which differs from the metric of

Names in node-level, which only considers the con-

cepts labeled with Name and ignores the accuracy

of named entities themselves. 1

5 Experiments

5.1 Dataset

We collect all Chinese-English text pairs in the

PMB. According to the quality label of English

DRS, we divide the data into gold data and silver

data, and randomly split the test set and develop-

ment set from the gold data. Since PMB data may

contain duplicate data, before splitting, we first fil-

ter the duplicate data. Then we merge the remain-

1Our evaluation suite is available at: https://github.

com/wangchunliu/SBN-evaluation-tool.

ing gold data and silver data as our training set, and

get a total of 137,781 training instances, 1,000 de-

velopment instances and 1,000 test instances, each

instance contains English DRS data, corresponding

English text, and Chinese text. 2

After splitting the data, we use the pipeline in-

troduced in Section 3 to process our Chinese and

English texts to get the Chinese and English word

alignment data, and then replace the named entities

in the English DRS with Chinese. However, we no-

ticed that not all replacements were successful. We

classified the wrong replacement types into four

types, as shown in Table 1. These errors are mainly

caused by GIZA++ alignment errors when align-

ing Chinese and English text words. Among them,

the fourth type of error is quite special. In our ex-

periment, we directly ignore the location named

entities used to refer to nationality and do not re-

place them with Chinese named entites. In order to

reduce the work of manual correction and make the

work reproducible, We only fix incorrect named

entity replacements in the test set, where 26 of the

2Our data and code are available at: https://github.

com/wangchunliu/Chinese-SBN-parsing.

https://github.com/wangchunliu/SBN-evaluation-tool
https://github.com/wangchunliu/SBN-evaluation-tool
https://github.com/wangchunliu/Chinese-SBN-parsing
https://github.com/wangchunliu/Chinese-SBN-parsing


Alignment Error Reason Example

Named-entities

Jieba
English: Melanie killed a spider with her hand .

Chinese: 媚兰用 ( 1 5 6 )手 ( 7 )杀死 ( 2 )了 ( )一只 ( 3 )蜘蛛 ( 4 )。 ( 8 )

HanLP
English: Melanie killed a spider with her hand .

Chinese: 媚兰 ( 1 6 )用 ( 5 )手 ( 7 )杀死 ( 2 )了 ( )一 ( 3 )只 ( )蜘蛛 ( 4 )。 ( 8 )

Information units

gold data
The ground floor was flooded .

Chinese: 一楼 ( 1 )被 ( )淹 ( 2 3 4 5 )了 ( )。 ( 6 )

all data
English: The ground floor was flooded .

Chinese: 一楼 ( 1 2 3 )被 ( 4 )淹 ( 5 )了 ( )。 ( 6 )

Table 2: Impact of different tokenizers and data sizes on GIZA++ performance.

1000 test set instances require manual correction of

named entities.

5.2 Settings

For tokenizers, we use Moses (Koehn et al., 2007)

and HanLP (He and Choi, 2021) on English and

Chinese respectively. We observe that the HanLP

tokenizer outperforms Jieba3, a tokenizer widely

used in Chinese, in segmenting text containing

named entities. This is an important indicator for

selecting a tokenizer, because getting the correct

Chinese and English named entity pairs is our main

goal. In addition, we observed that HanLP’s seg-

mentation results also outperformed Jieba’s tok-

enizer on text containing traditional Chinese char-

acters, while the Chinese data in PMB contains

traditional Chinese characters. This is also one of

the reasons for choosing the HanLP tokenizer. At

the top of Table 2, we show the difference in name

entities between the Jieba tokenizer and the HanLP

tokenizer. In addition, we give an example of the

impact of different sizes of training data on the

alignment performance of GIZA++ at the bottom

of Table 2, and the results show that it is almost

impossible to achieve correct alignment using only

gold data.

Document-level Word-level

Data Train dev test src tgt

English 137,781 1,000 1,000 38,441 39,761

Chinese 137,781 1,000 1,000 42,446 41,734

Table 3: Document statistics and vocabulary sizes.

All experiments are implemented based on Open-

NMT (Klein et al., 2017). For the vocabulary, we

construct vocabularies from all words, the vocabu-

lary sizes as shown in Table 3. The hyperparame-

3https://github.com/fxsjy/jieba

Metric EN ZH ZH→ENzh

Smatch1 91.0 86.0 84.7

Smatch2 88.9 83.8 81.7

Well-formed 99.8 99.7 99.7

Graph-level

No Roles 90.0 85.5 84.2

No Discourse 89.5 83.9 82.7

No Operators 89.5 84.7 83.4

No Senses 91.9 85.6 84.7

Table 4: F-scores with Smatch on the test set of seman-

tic parsers. Note: Smatch1 and Smatch2 represent the

original evaluation (Poelman et al., 2022b) and our im-

proved evaluation.

ters are set based on performance on the develop-

ment set. We use SGD optimizer with the initial

learning rate set to 1 and decay 0.8. In addition, we

set the dropout to 0.5 at the decoder layer to avoid

overfitting with batch size 32.

5.3 Main Results

Table 4 shows the results obtained by the parsers

with Smatch, which gives the overall performance

for different parsers. The first parser (EN) is trained

on the English dataset based on the model intro-

duced in Section 4.1. The Smatch1 result of our

English parser is slightly lower than the results of

Poelman et al. (2022b), which we believe is due

to slightly different training, development and test

set instances. The result of Smatch2 is significantly

lower than the result of Smatch1, indicating that

the F1-score has been significantly compressed and

will not be too inflated (see Section 4).

The Chinese parser (ZH) is trained on the data

created by the pipeline introduced in Section 3. The

results show that the performance of the Chinese

parser is lower than the English parser in all overall

evaluation metrics. ZH→ENzh shows the perfor-



Metric EN ZH ZH→ENzh

Node Names 70.8 66.0 67.7

Negation 92.3 88.7 88.8

Discourse 86.0 80.4 75.2

Roles 89.2 84.0 84.9

Members 97.5 95.4 95.9

Concepts 81.2 73.3 74.4

noun 87.1 82.1 83.3

adj 73.3 54.2 52.5

adv 76.8 35.3 45.5

verb 59.7 45.5 47.2

Edge Roles 81.0 73.3 73.7

Names 79.4 74.0 45.5

Members 90.9 86.4 87.0

Operators 92.9 87.7 87.7

Discourse 86.2 79.6 75.3

Table 5: F-scores of fine-grained evaluation on the test

set of semantic parsers. The evaluation metrics in the

table are all based on the Penman format DRG with

coarse-grained WordNet synsets.

mance by using the English parser on English text

translated from Chinese text instead of training a

dedicated model for Chinese text. The only unrea-

sonable point is that the model will generate En-

glish named entities, which may not be recognized

as the correct Chinese semantic representation.

The smatch1 scores and the smatch2 scores

show that the Chinese parser outperforms using the

ZH→ENzh approach. For the metrics No Senses

and No Roles, the evaluation results have been sig-

nificantly improved compared with Smatch2. This

shows that Concepts and Roles have a greater im-

pact on evaluation results than Discourse and Oper-

ators. It is worth noting that the performance dif-

ference between the Chinese and English parsers

is about five percentage points across all met-

rics, while the difference between the ZH and the

ZH→ENzh narrows at the graph-level metrics com-

pared to Smatch2 score.

5.4 Fine-grained Results and Analysis

To further explore the performance of parsers, we

apply our proposed fine-grained evaluation metrics

to the results of two parsers. Tabel 5 shows the

fine-grained evaluation performance of different

component types based on DRG at node-level and

edge-level.

Names: From the results, we observe that the

metric Names gives completely opposite results at

different evaluation levels. On the node-level, the

Names metric in ZH parser scores the lowest, but on

the edge-level, Names metric in ZH→ENzh gives

the lowest scores. This is reasonable and expected

because the node-level Names metric only evaluates

whether the parser can parse concepts to contain

named entities, so the results of ZH→ENzh parser

should be similar to those of the English parser.

However, the edge-level Names metric evaluates

whether the generated named entities completely

match the original text, and the ZH→ENzh parser

completely loses the Chinese named entity infor-

mation.

Discourse: An important observation is that

the metric Discourse has very low F1 scores on

both the node-level and the edge-level for the

Chinese parser. Using machine translation and

an English parser to parse Chinese (ZH→ENzh)

will further degrade the performance of the met-

ric Discourse. Based on the text data and parsed

output, we find that discourse relations in Chinese

are inconspicuous, and even disappears after being

translated into English (see Table 6 for examples).

Concepts: Table 5 shows the Concepts scores

of ZH parser are lower than those for ZH→ENzh

except for the adj category. This is an interesting

finding, because the performance of other parts

of speech in the ZH parser is worse than that of

ZH→ENzh, while adj is special. We observe that

the expressions of adjectives in Chinese translated

into English are diverse and may not match the

original English text (see Table 6 and Appendix B

for relevant examples).

For the English parser, verbs are the most dif-

ficult words to parse, scoring significantly lower

than other parts of speech. However, the difficulty

of Chinese semantic parsing is mainly reflected in

adv. In addition, the accuracy of ZH→ENzh in

parsing concepts of adv is significantly better than

that of the ZH parser, but it is still the lowest results

in four types of parts of speech for ZH→ENzh. On

the one hand, the corpus containing adverb data is

smaller, which makes the training insufficient. On

the other hand, the adverbs in Chinese are usually

not obvious and diverse.

For noun and verb, ZH has the worst perfor-

mance, with the ZH→ENzh method, the perfor-

mance of noun and verb is slightly improved, but it

is much worse than the EN parser. A typical reason

is that the English text translated from Chinese may

not be consistent with the original English text. We



Information Type Example Lost/Changed in Translation

Discourse

EN: A parrot can mimic a person’s voice.

POSSIBILITY LostZH:鹦鹉会模仿人的声音。

ZH→EN: Parrots mimic human voices.

EN: Tom asks his mother if she can buy him a new toy.

ATTRIBUTION LostZH:汤姆请求他母亲给他买新玩具。

ZH→EN: Tom begged his mother to buy him new toys.

Concepts

EN: That guy is completely nuts! ZH:那家伙真是疯了！
Adverb Lost

ZH→EN: That guy is crazy!

EN: She’s very handy with a saw. ZH: 她很会用锯子。
Adjective Changed

ZH→EN: She is good with a saw.

EN: I’m awake. ZH: 我醒了。
Adjective Lost

ZH→EN: I woke up.

EN: Tom is suffering from a bad headache.

Verb ChangedZH: 汤姆头痛得厉害。

ZH→EN: Tom has a bad headache.

Operators
EN: I slept on the boat. ZH: 我睡在船上。

Tense Lost
ZH→EN: I sleep on the boat.

Negation

EN: The music lured everyone. ZH: 音乐吸引了所有人。

NEGATION Lost
ZH→EN: Music appeals to all.

EN: The printer doesn’t work. ZH: 打印机坏了。

ZH→EN:The printer is broken.

Table 6: Examples of translated English texts with loss of information.

observe that the DRS sequences parsed using the

translated text are overall shorter than those parsed

using the original English text, some noun concepts

are missing, and the verb concepts may be incon-

sistent with the reference DRS (see Appendix B for

examples).

Operators & Negation: Our fine-grained re-

sults obtained by using machine translation and the

English parser are not always worse than training

a Chinese parser alone. For the metrics Negation

and Operators, both methods have similar scores

at both the node-level and the edge-level. However,

when we compare the results of ZH→ENzh with

EN parser, we find that all the results of ZH→ENzh

are significantly lower than those of the EN parser.

We found that tense information is usually lost in

the process of English-Chinese translation, but al-

most no tense information is lost in the process

of Chinese-English translation. This explains why

the result of the Chinese parser operator is signifi-

cantly lower than that of the English parser, while

the result of ZH→ENzh is the same as that of the

ZH parser. For Negation, we can observe some-

thing interesting. As the connector NEGATION in

English DRss can also express universal quantifica-

tion (using nesting of two negation operators) for

words such as "every" and "always", this informa-

tion is missing in the translation process, and as a

result not picked up by the parser.

Members & Roles: For this metric, ZH→ENzh

even slightly outperforms the ZH parser, but they

are both lower than the EN parser. On the one hand,

a free translation may lead to a different ordering

of semantic information. Although texts with the

same meaning but realised with different word or-

der have the same semantic graph, a parser based

on sequence-to-sequence neural networks may get

the wrong graph structure leading to a lower eval-

uation score of the Roles evaluation metric. On

the other hand, both evaluation metrics are affected

by the correctness of Concepts, and in our results,

the Chinese parser scored lower than the other two

parsers for Concepts.

6 Conclusion

Given an annotated meaning bank primarily de-

signed for English, it is feasible to develop a se-

mantic parser for Chinese by pairing the "English"

meaning representation with Chinese translations,

reaching good results. Most difficulties in Chi-

nese parsing are caused by adverbs, while the di-

versity of Chinese verbs and adjectives also has

a big impact on parsing performance. Using Ma-

chine Translation as an alternative to approach se-

mantic parsing for Chinese yields slightly lower

results. Our fine-grained graph evaluation gives

better insight when comparing different parsing

approaches.
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A Result Plots

According to the fine-grained evaluation results, for both English and Chinese DRS parsing, relatively low

f1 scores tend to appear in Names and Concepts. The performance of parser declined by approximately

five percent after the named entity was converted to Chinese, especially the adj and adv, comparing EN

with ZH.

Figure 5: Fine-grained results among EN, ZH, and ZH→ENzh in Node-level.

B Output DRS

Number Type Example

No.1

EN Text The music lured everyone.

ZH Text 音乐吸引了所有人。

ZH→EN Music appeals to all.

EN music.n.01 NEGATION <1 person.n.01 NEGATION <1 surprise.v.02 Stimulus -2 Experi-

encer -1 Time +1 time.n.08 EQU now

ZH music.n.01 NEGATION <1 person.n.01 NEGATION <1 appeal.v.01 Agent -2 Theme -1

Time +1 time.n.08 TPR now

ZH→ENzh event.v.01 Participant +1 music.n.01 appeal.v.01 Theme -1

Gold DRS music.n.01 NEGATION <1 person.n.01 NEGATION <1 lure.v.01 Agent -2 Patient -1 Time

+1 time.n.08 TPR now

No.2

EN Text She’s very handy with a saw.

ZH Text 她很会用锯子。

ZH→EN She is good with a saw.

EN female.n.02 time.n.08 EQU now very.r.01 handy.a.01 AttributeOf -3 Time -2 Degree -1

Instrument +1 saw.n.02

ZH female.n.02 time.n.08 TSU now use.v.01 Agent -2 Time -1 Theme +1 Instrument +2 en-

tity.n.01 saw.n.02

ZH→ENzh female.n.02 time.n.08 EQU now good.a.01 AttributeOf -2 Time -1 Instrument +1 saw.n.02

Gold DRS female.n.02 time.n.08 EQU now very.r.01 handy.a.03 AttributeOf -3 Time -2 Degree -1

Instrument +1 saw.n.02

Table 7: Examples of output DRSs by different parsers.


