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Abstract

Previous work has predominantly focused on
monolingual English semantic parsing. We, in-
stead, explore the feasibility of Chinese seman-
tic parsing in the absence of labeled data for
Chinese meaning representations. We describe
the pipeline of automatically collecting the lin-
earized Chinese meaning representation data
for sequential-to-sequential neural networks.
We further propose a test suite designed explic-
itly for Chinese semantic parsing, which pro-
vides fine-grained evaluation for parsing perfor-
mance, where we aim to study Chinese parsing
difficulties. Our experimental results show that
the difficulty of Chinese semantic parsing is
mainly caused by adverbs. Realizing Chinese
parsing through machine translation and an En-
glish parser yields slightly lower performance
than training a model directly on Chinese data.

1 Introduction

Semantic parsing is the task of transducing natural
language text into semantic representations, which
are expressed in logical forms underlying various
grammar formalisms, such as abstract meaning rep-
resentations (AMR, Wang et al. 2020; Bevilacqua
et al. 2021), minimal recursion semantics (MRS,
Horvat et al. 2015), and Discourse Representation
Theory (DRT, Kamp and Reyle 1993). In this
work, we explore the feasibility of parsing Chinese
text to semantic representation based on Discourse
Representation Structures (DRSs, Bos 2015a; van
Noord et al. 2018), which are meaning represen-
tations proposed from DRT, a recursive first-order
logic representation comprising of discourse refer-
ents (the entities introduced in the discourse) and
relations between them.

Several neural parsers for DRS have been re-
cently developed (Fancellu et al., 2019; Evang,
2019; van Noord et al., 2019; Liu et al., 2019; Wang
et al., 2021; van Noord et al., 2020a) and reached
remarkable performance, but mostly focused on

monolingual English or some language using the
Latin alphabet. Meaning representations are con-
sidered to be language-neutral, and texts with the
same semantics but in different languages have
the same meaning representation. The literature
presents several examples of parsing multilingual
text by training on monolingual English semantic
representations (Ribeiro et al., 2021).

For the reason of relatively limited amounts of
labeled gold-standard multilingual meaning repre-
sentation data, multilingual text parsing relies on
the source of silver English meaning representation
data. As long as the meanings are expressed in
a language-neutral way, this is a valid approach.
However, named entities aren’t usually, because
they can (a) have different orthography for differ-
ent languages using the same alphabet (in particular
for location names, e.g., Berlin, Berlijn, Berlino,
Berlynas) or (b) be written with a completely dif-
ferent character set, as is the case for Chinese.

Figure 1 shows a (nearly) language-neutral
meaning representation for a simple English sen-
tence. For non-English Latin alphabet languages,
the named entities in the text are usually consis-
tent with English, and the meaning in the form of
a graph structure of the corresponding Discourse
Representation (Discourse Representation Graph,
DRG) would be identical to these languages (Bos,
2021), as shown in Figure 1. However, it would
be rather absurd to expect a semantic parser for
Chinese to produce meaning representations (with
interlingual WordNet synsets) where proper names
are anchored using the Latin alphabet using English
(or any other language for that matter) orthogra-
phy. We need to keep this important aspect in mind
when evaluating semantic parsers for languages
other than English.

However, for non-Latin alphabet languages, such
as the widely used language of Chinese, is it fea-
sible to use English meaning representation as the
meaning representation of Chinese? Our objective



is to investigate whether Chinese semantic pars-
ing can achieve the same performance as English
semantic parsing while using the same amount of
data. We try to investigate whether it is necessary to
develop a dedicated parser for Chinese, or whether
it is possible to achieve a similar performance using
an English parser by leveraging machine transla-
tion (MT) on Chinese. We provide inexpensively
acquired silver-standard Chinese DRS data to im-
plement our exploration: (1) We collect Chinese
and English aligned texts from the Parallel Mean-
ing Bank (PMB, Abzianidze et al. 2017), which
provides parallel multilingual corpora including
corresponding English meaning representation ex-
pressed in DRSs. (2) We leverage GIZA++ (Och
and Ney, 2003) to align the word-segmented Chi-
nese and English to obtain Chinese-English named
entity alignment pairs, the resulting named entities
are used to replace the named entities in our English
semantic representation. (3) We train two monolin-
gual parsers on the two languages separately, and
then provide a set of fine-grained evaluation met-
rics to make better comparison between parsers.
We aim to answer the following questions:

1. Can existing DRS parsing models achieve
good results for Chinese? (RQ1)

2. What are the difficulties in semantic parsing
for Chinese? (RQ2)

3. Is it feasible to use machine translation and
an English parser to parse Chinese? How is it
different from designing a special parser for
Chinese? (RQ?3)

4. How to conduct more fine-grained evaluation
of experimental results and reduce the work-
load of manual evaluation? (RQ4)

2 Background

2.1 Discourse Representation Structure

DRS, as a kind of formal meaning representation,
can be used to represent the semantic meaning of
sentences and discourse. For the wide coverage
of linguistic phenomena at quantification, nega-
tion, reference resolution, comparatives, discourse
relations, and presupposition, DRT and DRS pos-
sess stronger semantic representation power than
AMR. A DRS comprises discourse referents and
conditions. However, some variants of DRS for-
mats have been introduced in recent years, the for-
mat we employ throughout our work being one
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3 (b) male.n.02 Name "Tom"

' break.v.01 Agent -1 Time +1 Theme +3
time.n.08 TPR now
male.n.02 EQU -3
engagement.n.01 User -1 Recipient +1
female.n.02 Name "Mary”

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(c) EN: Tom broke off his engagement to Mary.
i DE: Tom léste seine Verlobung mit Mary auf.

Figure 1: DRS in (a) graph format, (b) sequential box
notation and (c) corresponding multilingual texts for
English, German and Chinese.

of them. We use a simplified DRS, which can be
called Discourse Representation Graph (DRG) or
Simplified Box Notation (SBN; Bos 2021). It dis-
cards explicit discourse references and variables
while maintaining the same expressive power, as
shown in Figure 2.

As introduced by Bos (2021), DRS allows two
kinds of representations: graph and sequential
notation (Figure 1). There are five types of se-
mantic information involved in DRS: concepts
(read.v.01, paper.n.02, new.a.@1, ...), roles
(Agent, Theme, Time, ...), constants (speaker,
hearer, now, ...), comparison operators (=,
<, ~, ...) and discourse relations (NEGATION,
CONTINUATION, CONTRAST, ...), where concepts
and roles are represented by WordNet synsets (Fell-
baum, 2000) and VerbNet thematic relations (Kip-
per et al., 2006) respectively.

2.2 DRS parsing

DRS parsing was originally applied to English and
has been continuously extended to other Latin lan-
guages. Initially, rule-based systems were predomi-
nantly utilized by early parsers for analyzing small
English texts (Johnson and Klein, 1986; Asher and
Wada, 1988; Bos, 2004, 2008, 2015b). The first
version of GMB (Basile et al., 2012) which pro-
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Figure 2: An example of a DRG with negation for sen-
tence: "Tom doesn’t spend much time in Boston."

vides English texts with DRS, is built on Boxer
(Bos, 2008). With the release of PMB (Abzian-
idze et al., 2017) and the propose of the first shared
tasks (Abzianidze et al., 2019), related research
keeps growing, with a focus on deep learning mod-
els (Evang, 2019; Fancellu et al., 2019; van Noord
etal., 2018, 2020a; Liu et al., 2019). The target lan-
guages have also expanded to other languages: Ger-
man, Italian, Dutch and Chinese (Shen and Evang,
2022; Poelman et al., 2022a; Wang et al., 2021;
Liu et al., 2021). Translation has been utilized in
two manners when dealing with cross-lingual pars-
ing: the first involves translating other languages
into English and then employing an English parser,
while the second involves translating English into
other languages and training a parser specific to
that language (Liu et al., 2021). In this paper, we
use the existing Chinese-English parallel corpus to
design a specific parser for Chinese, and compare
the performance of the parser with the first method.

3 Data Creation

In previous work, for non-English parsing tasks,
the semantic representation of English is usually
directly used as the semantic representation of the
target language, but most of these works focus
on Latin languages (Fancellu et al., 2019; Ribeiro
et al., 2021). For non-Latin languages such as Chi-
nese, named entities are not language-neutral, as
illustrated in the work of Wang et al. (2021), and
are quite different from named entities in English
texts. To design a more reasonable Chinese parser,
we first focus on replacing the named entities in

the English semantic representation with Chinese,
so that the parser can parse out the Chinese named
entities corresponding to the text content according
to different texts.

To achieve our goal, we use the data of PMB, the
largest parallel corpus of DRS data available, as
our experimental object. From the PMB, English-
Chinese parallel texts and DRS data for English
texts are collected. Based on that, we propose a
pipeline to obtain Chinese DRS for Chinese text.
Our pipeline has three steps: (1) using tokenizers
tools to segment Chinese and English text data;
(2) utilizing the English-Chinese alignment tool
to obtain the alignment tokens between Chinese
and English texts; (3) replacing named entities in
English DRS with Chinese named entities. Figure 3
shows our processing pipeline.

3.1 Text Tokenizers

Preprocessing data with a tokenizer is an impor-
tant step in the pipeline because the alignment of
Chinese and English texts needs to act on the data
after tokenization. At the same time, since the
quality of upstream results directly affects down-
stream performance, the quality of text segmenta-
tion also directly affects the correctness of Chinese
and English text alignment. In this work, we use
Moses (Koehn et al., 2007) for English, which is
advanced and widely used. It is a collection of
complex normalization and segmentation logic that
works very well for structured languages like En-
glish. For Chinese, we choose HanLLP (He and
Choi, 2021), which is an efficient, user-friendly
and extendable tokenizer. Different from a widely
used Jieba tokenizer, HanLP is based on the CRF al-
gorithm. It takes into account word frequency and
context at the same time, and can better identify
ambiguous words and unregistered words.

3.2 English-Chinese Alignment

In order to realize the replacement of named enti-
ties in English semantic representation with Chi-
nese named entities, it is very important to ob-
tain the correct alignment of Chinese and English
texts, especially the alignment of named entities
in the two texts. In order to quickly and effec-
tively obtain the alignment data in Chinese and En-
glish, we choose the GIZA++ word aligning tool.
GIZA++ is the most popular statistical alignment
and MT toolkit (Och and Ney, 2000), which imple-
ments the lexical translation models of Brown et al.
(1993) (IBM Models), and the Hidden-Markov



(a) Yunus founded the Grameen Bank 30 years ago .
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(b) Yunus: Ji; %l
Grameen Bank: %3¢SR0 17

! male.n.02  Name "Yunus" % Yunus [1] | malen.02  Name "Ju55 " "

! found.v.01 Agent -1 Theme +2 Time +5% founded [2] | found.v.01 Agent -1 Theme +2 Time +5
! time.n.08  TPR now % time.n.08  TPR now

company.n.01 Name "Grameen Bank" % the Grameen Bank [3—5]3 ' company.n.01 Name "% 332417

| quantity.n.01 EQU 30
! year.n.01  Quantity -1 TAB now
! time.n.08  TIN -4 TAB -1

% 30 [6]
% years [7]
% ago . [8-9]

! quantity.n.01 EQU 30
! yearn.01  Quantity -1 TAB now
| time.n.08  TIN -4 TAB -1

Figure 3: (a) Alignment tokens obtained by GIZA++ tool for English ("Yunus founded the Grameen Bank 30 years

ago.") and Chinese ("JUEH30FFIOI3L T HESEERIT -

"), (b) aligned named entities dictionary in above texts,

(c) same meaning representations with different named entities for English text and Chinese text respectively.

alignment Model (Vogel et al., 1996), trained using
expectation-maximization (EM). GIZA++ is highly
effective at aligning frequent words in a corpus, but
error-prone for infrequent words.

3.3 Replacing Named Entities

The last step to obtain the Chinese semantic rep-
resentation is to replace the named entities in the
English DRS with Chinese named entities. First,
the English named entities in DRS data can be eas-
ily obtained according to the edge types between
two nodes. When the edge type is Name, the output
nodes are named entities in the DRG. After process-
ing the Chinese and English texts with the GIZA++
tool in the second step, we can obtain alignment to-
kens between Chinese and English. On this basis, a
named entity alignment dictionary can be obtained,
and then the English named entities in the DRS
data can be replaced with Chinese named entities
based on this dictionary.

4 Methodology

4.1 Neural Models

We adopt Recurrent Neural Networks (RNN)
equipped with Long Short-Term Memory units
(LSTM; Hochreiter and Schmidhuber 1997) as our
baseline models. Following the work of van Noord
et al. (2020b), we use frozen mBERT (Devlin et al.,
2019) embeddings to initialize the encoder. An
attention-based LSTM architecture is used for the
decoder, where the attention memory is the con-
catenation of the attention vectors among all the
input tokens. In addition, the copy mechanism (Gu
et al., 2016; Gulcehre et al., 2016) is added to the
decoder, which can integrate the attention distri-
bution into the final vocabulary distribution. The

copy mechanism favors copying tokens from the
source text into the target text instead of generating
all target tokens only from the target vocabulary.

4.2 Evaluation

Given a document to the DRS parser, it will gener-
ate variable-free sequential notation DRS as shown
in Figure 1(b). The evaluation tool for DRS pars-
ing task was recently proposed by Poelman et al.
(2022b) and is based on the AMR standard eval-
uation tool Smatch (Cai and Knight, 2013). By
converting a sequential DRS into DRG, Penman no-
tation format data (Kasper, 1989) can be obtained,
as shown in Figure 4 (b), and then Smatch can be
used to compute F-scores based on matching triples
between system output and gold meanings.

However, we note that the scores given by the
above evaluation tool have two flaws: (1) the eval-
uation scores are too inflated, and it is difficult
to detect the differences between different parsers.
(2) the evaluation tool only gives an overall score
without evaluating the different types of constituent
elements in the DRS, it is difficult to quantitatively
determine what is the difficulty of the parser in the
parsing process. Based on that, we propose to com-
press evaluation scores to improve the above eval-
uation methods and further propose fine-grained
evaluation metrics for different subtasks according
to different types of components in DRS.

4.2.1 Overall Evaluation

Our improvement strategy is mainly aimed at the
representation of the Penman format of DRG. We
mainly improve on two points, one is WordNet
synsets representation, and the other is constants
representation.

In the previous evaluation method, the WordNet
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Figure 4: (a) Graph structured DRS for Chinese sentence:" {77 HALfE—HR[F A _E - ". (b) Penman format of DRG
with fine-grained WordNet synsets used for evaluation (Poelman et al., 2022b). (c) Penman format of DRG with
coarse-grained WordNet synsets used for evaluation (Ours).

synsets in Penman format are fine-grained during
the evaluation process, and the WordNet synsets
are divided into three parts (lemma, pos, number)
according to their constituents. On this basis, even
if the parser generates wrong concepts, such as
time.n.08 and time.n.@1, the Smatch still ob-
tains a similar inflated F1 score. To this end, we
change the WordNet synsets in the Penman for-
mat to a coarse-grained representation to strictly
evaluate WordNet synsets qualities generated by
parsers, as shown in Figure 4 (c¢). In addition, we
have also modified the constant representation in
Penmen format, such as the constant now shown in
the figure, because the variable ¢ is added to the
constant, making the triples in Penman format re-
dundant, which also makes the F1-score higher to a
certain extent. By omitting the ¢ variable as shown
in Figure 4 (c), we further compress the F1-score.

4.2.2 Fine-grained Evaluation

To evaluate the quality of specific subtasks in DRS
parsing, we imitate the fine-grained metrics for
AMR parsing task (Damonte et al., 2017; Zhang
etal., 2019) to DRS parsing. In order to make them
compatible with DRS, we make some changes
based on the data characteristics of DRS. Our fine-
grained metrics consist of three categories in total:

graph-level, node-level and edge-level. Each cat-
egory includes more fine-grained evaluation met-
rics. All the metrics are proposed based on the
semantic information types involved in DRS (see
Section 2.1).

In graph-level ecvaluation, No Roles, No
Discourse, No Operators and No Senses are
used to represent the Smatch scores of the DRG in
Penman format ignoring Roles, Discourse, Oper-
ators and Senses respectively. In theory, they are
Smatch’s coarse-grained scores, which are higher
than the original Smatch scores.

In node-level evaluation, we compute F-score
on the list of parsed information types (such as
roles, constants, and discourse relations) instead
of using Smatch. Note that different from the met-
rics in the AMR parsing task, concepts in DRS
are represented by WordNet synsets, so Concepts
can be evaluated more finely by part-of-speech
(noun, adjective, adverb and verb). Discourse
detects all discourse relation labels except NEGA-
TION since it is more common and specific in DRS
than other discourse relations labels, the Negation
metric is used for evaluation to detect NEGATION
edge label alone. In addition, Member metric is
added to evaluate the ratio of the generated con-
cepts. In DRG, member represents the edge label



Alignment Error Data Type Example
Chinese = RIRE I o
English is an of Sirius .
Wrong male.n.02 Name "#f /K- ¥ " be.v.08 Theme -1 Time +1 Co-Theme +2
Di . time.n.08 EQU now person.n.01 Role +1 executive.n.01 Of +1 company.n.01
islocation -
Name "HUATH
Corrected ~ male.n.02 Name "# /K-~ ¥4 " be.v.08 Theme -1 Time +1 Co-Theme +2
time.n.08 EQU now person.n.01 Role +1 executive.n.01 Of +1 company.n.01
Name "F A"
Chinese 2 RERIE T “BRIR 7 —E 75X & aK 7
English What group sang the song " Happy Together " ?
Character Exclusion Wrong group.n.0l Name ? sing.v.02 Agent -1 Time +1 Theme +2 time.n.08 TPR now
song.n.01 EQU +1 music.n.01 Name "}t 5K — "
Corrected group.n.01 Name ? sing.v.02 Agent -1 Time +1 Theme +2 time.n.08 TPR now
song.n.01 EQU +1 music.n.01 Name "R E—if2"
Chinese PR FHET .
English Rutherford Hayes was born in in .
Wrong male.n.02 Name " 25 1@ H71822" time.n.08 TPR now bear.v.02 Patient -2
Character Inclusion Location +1 Time +2 state.n.01 Name " 22 f/l" time.n.08 YearOfCentury 1822
TIN -3
Corrected male.n.02 Name "/ &5 7" time.n.08 TPR now bear.v.02 Patient -2 Location
+1 Time +2 state.n.01 Name " Z fM" time.n.08 YearOfCentury 1822 TIN -3
Chinese BRNEZREZKN -
English I 'am not Irish .
Wrong person.n.01 EQU speaker NEGATION <1 time.n.08 EQU now be.v.03 Theme -2
Nationality Time -1 Source +1 country.n.02 Name ""
Corrected person.n.01 EQU speaker NEGATION <1 time.n.08 EQU now be.v.03 Theme -2

Time -1 Source +1 country.n.02 Name "ireland"

Table 1: Alignment errors illustrated by four examples. In Chinese and English texts, words of the same color
indicate correct alignment between them. Inbformation marked in red is the wrong named entity obtained by the

GIZA++ tool. Text in green indicates the correct named entity in the corrected DRS.

connecting the BOX node and the concepts node,
i.e., the dashed line as shown in Figure 4 (a).

For edge-level evaluation, we focus on calculat-
ing the F-score based on the number of matching
triples in the parsed DRG and the gold DRG. For
example, Names in edge-level is a metric that con-
siders the relations between concepts nodes and
named entities, which differs from the metric of
Names in node-level, which only considers the con-
cepts labeled with Name and ignores the accuracy
of named entities themselves. !

5 Experiments

5.1 Dataset

We collect all Chinese-English text pairs in the
PMB. According to the quality label of English
DRS, we divide the data into gold data and silver
data, and randomly split the test set and develop-
ment set from the gold data. Since PMB data may
contain duplicate data, before splitting, we first fil-
ter the duplicate data. Then we merge the remain-

'Our evaluation suite is available at: https://github.
com/wangchunliu/SBN-evaluation-tool.

ing gold data and silver data as our training set, and
get a total of 137,781 training instances, 1,000 de-
velopment instances and 1,000 test instances, each
instance contains English DRS data, corresponding
English text, and Chinese text. 2

After splitting the data, we use the pipeline in-
troduced in Section 3 to process our Chinese and
English texts to get the Chinese and English word
alignment data, and then replace the named entities
in the English DRS with Chinese. However, we no-
ticed that not all replacements were successful. We
classified the wrong replacement types into four
types, as shown in Table 1. These errors are mainly
caused by GIZA++ alignment errors when align-
ing Chinese and English text words. Among them,
the fourth type of error is quite special. In our ex-
periment, we directly ignore the location named
entities used to refer to nationality and do not re-
place them with Chinese named entites. In order to
reduce the work of manual correction and make the
work reproducible, We only fix incorrect named
entity replacements in the test set, where 26 of the

2Qur data and code are available at: https://github.
com/wangchunliu/Chinese-SBN-parsing.
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Alignment Error  Reason Example
Tieba English: Melanie killed a spider with her hand .
. Chinese: 8“1 (156) F (7)ARIE(2) T () —H (3) Wik (4) - (8)
Named-entities - — - -
Hanl P English: Melanie killed a spider with her hand .
Chinese: 4= (16) FH (5) F(7)ARFE(2) T O—(3) R O B¥% (4) - (8)
old data The ground floor was flooded .
S Chinese: —% (1) B )% (2345)T O - (6)
Information units -
all data English: The ground floor was flooded .

Chinese: — 1% (123)# (4)#E(5) T () - (6)

Table 2: Impact of different tokenizers and data sizes on GIZA++ performance.

1000 test set instances require manual correction of
named entities.

5.2  Settings

For tokenizers, we use Moses (Koehn et al., 2007)
and HanLLP (He and Choi, 2021) on English and
Chinese respectively. We observe that the HanLLP
tokenizer outperforms Jieba®, a tokenizer widely
used in Chinese, in segmenting text containing
named entities. This is an important indicator for
selecting a tokenizer, because getting the correct
Chinese and English named entity pairs is our main
goal. In addition, we observed that HanLLP’s seg-
mentation results also outperformed Jieba’s tok-
enizer on text containing traditional Chinese char-
acters, while the Chinese data in PMB contains
traditional Chinese characters. This is also one of
the reasons for choosing the HanLLP tokenizer. At
the top of Table 2, we show the difference in name
entities between the Jieba tokenizer and the HanLLP
tokenizer. In addition, we give an example of the
impact of different sizes of training data on the
alignment performance of GIZA++ at the bottom
of Table 2, and the results show that it is almost
impossible to achieve correct alignment using only
gold data.

Document-level Word-level
Train dev test src tgt

English 137,781 1,000 1,000 38,441 39,761
Chinese 137,781 1,000 1,000 42,446 41,734

Data

Table 3: Document statistics and vocabulary sizes.

All experiments are implemented based on Open-
NMT (Klein et al., 2017). For the vocabulary, we
construct vocabularies from all words, the vocabu-
lary sizes as shown in Table 3. The hyperparame-

3https://github.com/fxsjy/jieba

Metric EN ZH ZH—EN,,
Smatch; 91.0 86.0 84.7
Smatchsy 88.9 83.8 81.7
Well-formed 99.8 99.7 99.7
Graph-level

No Roles 90.0 85.5 84.2
No Discourse 89.5 83.9 82.7
No Operators 89.5 84.7 83.4
No Senses 91.9 85.6 84.7

Table 4: F-scores with Smatch on the test set of seman-
tic parsers. Note: Smatch; and Smatch, represent the
original evaluation (Poelman et al., 2022b) and our im-
proved evaluation.

ters are set based on performance on the develop-
ment set. We use SGD optimizer with the initial
learning rate set to 1 and decay 0.8. In addition, we
set the dropout to 0.5 at the decoder layer to avoid
overfitting with batch size 32.

5.3 Main Results

Table 4 shows the results obtained by the parsers
with Smatch, which gives the overall performance
for different parsers. The first parser (EN) is trained
on the English dataset based on the model intro-
duced in Section 4.1. The Smatch; result of our
English parser is slightly lower than the results of
Poelman et al. (2022b), which we believe is due
to slightly different training, development and test
set instances. The result of Smatchs is significantly
lower than the result of Smatch;, indicating that
the F1-score has been significantly compressed and
will not be too inflated (see Section 4).

The Chinese parser (ZH) is trained on the data
created by the pipeline introduced in Section 3. The
results show that the performance of the Chinese
parser is lower than the English parser in all overall
evaluation metrics. ZH—EN_;, shows the perfor-



Metric EN ZH ZH—EN,,
Node Names 70.8 66.0 67.7
Negation 92.3 88.7 88.8
Discourse 86.0 80.4 75.2
Roles 89.2 84.0 84.9
Members 97.5 954 95.9
Concepts 81.2 73.3 74.4
noun 87.1 82.1 83.3
adj 73.3 54.2 52.5
adv 76.8 35.3 45.5
verb 59.7 45.5 47.2
Edge Roles 81.0 73.3 73.7
Names 79.4 74.0 45.5
Members 90.9 86.4 87.0
Operators 92.9 87.7 87.7
Discourse 86.2 79.6 753

Table 5: F-scores of fine-grained evaluation on the test
set of semantic parsers. The evaluation metrics in the
table are all based on the Penman format DRG with
coarse-grained WordNet synsets.

mance by using the English parser on English text
translated from Chinese text instead of training a
dedicated model for Chinese text. The only unrea-
sonable point is that the model will generate En-
glish named entities, which may not be recognized
as the correct Chinese semantic representation.

The smatch; scores and the smatchy scores
show that the Chinese parser outperforms using the
ZH—EN,;, approach. For the metrics No Senses
and No Roles, the evaluation results have been sig-
nificantly improved compared with Smatchy. This
shows that Concepts and Roles have a greater im-
pact on evaluation results than Discourse and Oper-
ators. It is worth noting that the performance dif-
ference between the Chinese and English parsers
is about five percentage points across all met-
rics, while the difference between the ZH and the
ZH—EN,}, narrows at the graph-level metrics com-
pared to Smatchs score.

5.4 Fine-grained Results and Analysis

To further explore the performance of parsers, we
apply our proposed fine-grained evaluation metrics
to the results of two parsers. Tabel 5 shows the
fine-grained evaluation performance of different
component types based on DRG at node-level and
edge-level.

Names: From the results, we observe that the
metric Names gives completely opposite results at

different evaluation levels. On the node-level, the
Names metric in ZH parser scores the lowest, but on
the edge-level, Names metric in ZH—EN,; gives
the lowest scores. This is reasonable and expected
because the node-level Names metric only evaluates
whether the parser can parse concepts to contain
named entities, so the results of ZH—EN,; parser
should be similar to those of the English parser.
However, the edge-level Names metric evaluates
whether the generated named entities completely
match the original text, and the ZH—EN,,;, parser
completely loses the Chinese named entity infor-
mation.

Discourse: An important observation is that
the metric Discourse has very low F1 scores on
both the node-level and the edge-level for the
Chinese parser. Using machine translation and
an English parser to parse Chinese (ZH—EN.;,)
will further degrade the performance of the met-
ric Discourse. Based on the text data and parsed
output, we find that discourse relations in Chinese
are inconspicuous, and even disappears after being
translated into English (see Table 6 for examples).

Concepts: Table 5 shows the Concepts scores
of ZH parser are lower than those for ZH—EN,,;,
except for the adj category. This is an interesting
finding, because the performance of other parts
of speech in the ZH parser is worse than that of
ZH—EN,;,, while adj is special. We observe that
the expressions of adjectives in Chinese translated
into English are diverse and may not match the
original English text (see Table 6 and Appendix B
for relevant examples).

For the English parser, verbs are the most dif-
ficult words to parse, scoring significantly lower
than other parts of speech. However, the difficulty
of Chinese semantic parsing is mainly reflected in
adv. In addition, the accuracy of ZH—EN,; in
parsing concepts of adv is significantly better than
that of the ZH parser, but it is still the lowest results
in four types of parts of speech for ZH—EN, ;. On
the one hand, the corpus containing adverb data is
smaller, which makes the training insufficient. On
the other hand, the adverbs in Chinese are usually
not obvious and diverse.

For noun and verb, ZH has the worst perfor-
mance, with the ZH—EN,; method, the perfor-
mance of noun and verb is slightly improved, but it
is much worse than the EN parser. A typical reason
is that the English text translated from Chinese may
not be consistent with the original English text. We



Information Type

Example

Lost/Changed in Translation

EN: A parrot can mimic a person’s voice.

ZH: W 2T E F - POSSIBILITY Lost
Discourse ZH—EN: Parrots mimic human voices.
EN: Tom asks his mother if she can buy him a new toy.
ZH: iR B R 25 S B A ATTRIBUTION Lost
ZH—EN: Tom begged his mother to buy him new toys.
. e N | . Ak B |
EN: That guy is c(m'lpl«,tcly nuts! ZH: ARZKAKEIEIC T ! Adverb Lost
ZH—EN: That guy is crazy!
EN: She’s very handy with a saw. ZH: IREFET - L
ZH—EN: She is good with a saw. Adjective Changed
Concepts EN: I'm awake. ZH: FI& | - .
ZH—EN: T woke up. Adjective Lost
EN: Tom is suffering from a bad headache.
ZH: YilLRRE & - Verb Changed
ZH—EN: Tom has a bad headache.
Oberators EN: I slept on the boat. ZH: FKHEAEM L - Tense Lost
b ZH—EN: I sleep on the boat. ) ’
EN: The music lured everyone. ZH: &= RWK5I T B A -
Negation ZH—EN: Music appeals to all. NEGATION Lost

ZH—EN:The printer is broken.

EN: The printer doesn’t work. ZH: FTEIHLIN T -

Table 6: Examples of translated English texts with loss of information.

observe that the DRS sequences parsed using the
translated text are overall shorter than those parsed
using the original English text, some noun concepts
are missing, and the verb concepts may be incon-
sistent with the reference DRS (see Appendix B for
examples).

Operators & Negation: Our fine-grained re-
sults obtained by using machine translation and the
English parser are not always worse than training
a Chinese parser alone. For the metrics Negation
and Operators, both methods have similar scores
at both the node-level and the edge-level. However,
when we compare the results of ZH—EN,,;, with
EN parser, we find that all the results of ZH—EN,;,
are significantly lower than those of the EN parser.
We found that tense information is usually lost in
the process of English-Chinese translation, but al-
most no tense information is lost in the process
of Chinese-English translation. This explains why
the result of the Chinese parser operator is signifi-
cantly lower than that of the English parser, while
the result of ZH—EN,;, is the same as that of the
ZH parser. For Negation, we can observe some-
thing interesting. As the connector NEGATION in
English DRss can also express universal quantifica-
tion (using nesting of two negation operators) for
words such as "every" and "always", this informa-
tion is missing in the translation process, and as a
result not picked up by the parser.

Members & Roles: For this metric, ZH—EN_;,
even slightly outperforms the ZH parser, but they
are both lower than the EN parser. On the one hand,
a free translation may lead to a different ordering
of semantic information. Although texts with the
same meaning but realised with different word or-
der have the same semantic graph, a parser based
on sequence-to-sequence neural networks may get
the wrong graph structure leading to a lower eval-
uation score of the Roles evaluation metric. On
the other hand, both evaluation metrics are affected
by the correctness of Concepts, and in our results,
the Chinese parser scored lower than the other two
parsers for Concepts.

6 Conclusion

Given an annotated meaning bank primarily de-
signed for English, it is feasible to develop a se-
mantic parser for Chinese by pairing the "English"
meaning representation with Chinese translations,
reaching good results. Most difficulties in Chi-
nese parsing are caused by adverbs, while the di-
versity of Chinese verbs and adjectives also has
a big impact on parsing performance. Using Ma-
chine Translation as an alternative to approach se-
mantic parsing for Chinese yields slightly lower
results. Our fine-grained graph evaluation gives
better insight when comparing different parsing
approaches.
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A Result Plots

According to the fine-grained evaluation results, for both English and Chinese DRS parsing, relatively low
f1 scores tend to appear in Names and Concepts. The performance of parser declined by approximately
five percent after the named entity was converted to Chinese, especially the adj and adv, comparing EN
with ZH.

F1 score

Names Negations Discourses Roles Members Concepts C_nouns C_adj C_adv C_verbs
Node-Level Fine-grained Metric

Figure 5: Fine-grained results among EN, ZH, and ZH—EN;, in Node-level.

B Output DRS

Number Type Example

EN Text The music lured everyone.

ZHText  HARWS THEAN.
ZH—EN  Music appeals to all.

EN music.n.01 NEGATION <1 person.n.01 NEGATION <1 surprise.v.02 Stimulus -2 Experi-
No.l encer -1 Time +1 time.n.08 EQU now
ZH music.n.01 NEGATION <1 person.n.01 NEGATION <1 appeal.v.01 Agent -2 Theme -1
Time +1 time.n.08 TPR now
ZH—EN,; event.v.0l Participant +1 music.n.01 appeal.v.01 Theme -1
Gold DRS  music.n.01 NEGATION <1 person.n.01 NEGATION <1 lure.v.01 Agent -2 Patient -1 Time
+1 time.n.08 TPR now
EN Text She’s very handy with a saw.
ZHText  MREHSET -
ZH—EN  Sheis good with a saw.
EN female.n.02 time.n.08 EQU now very.r.01 handy.a.01 AttributeOf -3 Time -2 Degree -1
No2 Instrument +1 saw.n.02
ZH female.n.02 time.n.08 TSU now use.v.01 Agent -2 Time -1 Theme +1 Instrument +2 en-

tity.n.01 saw.n.02
ZH—EN,; female.n.02 time.n.08 EQU now good.a.01 AttributeOf -2 Time -1 Instrument +1 saw.n.02
Gold DRS female.n.02 time.n.08 EQU now very.r.01 handy.a.03 AttributeOf -3 Time -2 Degree -1
Instrument +1 saw.n.02

Table 7: Examples of output DRSs by different parsers.



