arXiv:1805.00356v1 [csIR] 1 May 2018

Deep Factorization Machines for Knowledge Tracing

Jill-Jénn Vie
RIKEN Center for Advanced Intelligence Project
Nihonbashi 1-4-1, Mitsui Building 15F
Chuo-ku, 103-0027 Tokyo, Japan
vie@jill-Jjenn.net

Abstract

This paper introduces our solution to the 2018
Duolingo Shared Task on Second Language
Acquisition Modeling (SLAM). We used deep
factorization machines, a wide and deep learn-
ing model of pairwise relationships between
users, items, skills, and other entities consid-
ered. Our solution (AUC 0.815) hopefully
managed to beat the logistic regression base-
line (AUC 0.774) but not the top perform-
ing model (AUC 0.861) and reveals interesting
strategies to build upon item response theory
models.

1 Introduction

Given the massive amount of data collected by on-
line platforms, it is natural to wonder how to use
it to personalize learning. Students should receive,
based on their estimated knowledge, tailored exer-
cises and lessons, so they can be guided through
databases of potentially millions of exercises.

With this objective in mind, numerous mod-
els have been designed for student modeling
(Desmarais and Baker, 2012). Based on the out-
comes of students, one can infer the parameters
of these so-called student models, measure knowl-
edge, and tailor instruction accordingly.

In the 2018 Duolingo Shared Task on Second
Language Acquisition Modeling (Settles et al.,
2018), we had access to attempts of thousands
of students over sentences (composed of thou-
sands of possible words, each of these being la-
beled as correct or incorrect), and we had to
predict whether a student would write correctly
or not the words of a new sentence. Sentences
were annotated with precious side information
such as lexical, morphological, or syntactic fea-
tures. This problem is coined as knowledge trac-
ing (Corbett and Anderson, 1994) or predicting
student performance (Minaei-Bidgoli et al., 2003)

in the literature. In this particular challenge, it is
done at the word level.

In this paper, we explain the motivations that
led us to our solution, and show how our models
handle typical models in educational data mining
as special cases. In Section 2, we show related
work. In Section 3, we present the existing model
of DeepFM and clarify how it can be applied for
knowledge tracing, notably the SLAM task. In
Section 4, we detail the data preparation, in order
to apply DeepFM. Finally, we expose our results
in Section 5 and further work in Section 6.

2 Related Work

Item Response Theory (IRT) models
(Hambleton et al., 1991) have been exten-
sively studied and deployed in many real-world
applications such as standardized tests (GMAT).
They model the ability (level information) of
students, and diverse parameters of items (such
as difficulty), and involve many criteria for
the selection of items to measure the ability of
examinees.

Related work in knowledge tracing consists
in predicting the sequence of outcomes for a
given learner. Historically, Bayesian Knowledge
Tracing (BKT) modeled the learner as a Hidden
Markov model (Corbett and Anderson, 1994), but
with the advent of deep learning, a Deep Knowl-
edge Tracing (DKT) model has been proposed
(Piech et al., 2015), relying on long short-term
memory (Hochreiter and Schmidhuber, 1997).
However, Wilson et al. (2016) have shown that
a simple variant of IRT could outperform DKT
models.

All of these IRT, BKT or DKT models do
not consider side information, such as knowledge
components, which is why new models naturally
rose. Vie and Kashima (2018) have used Bayesian

http://arxiv.org/abs/1805.00356v1

factorization machines for knowledge tracing, and
recovered most student models as special cases.

Wide and deep learning models have been pro-
posed by Google (Chengetal., 2016) to learn
lower-order and higher-order features. Guo et al.
(2017) have proposed a variant where they replace
the wide linear model by a factorization machine,
and this is the best model we got for the Shared
Task challenge.

3 DeepFM for knowledge tracing

We now introduce some vocabulary. We assume
that our observed instances can be described by C
categories of discrete or continuous features (such
as user_id, item_id or country, but also
time). Entities denote couples of categories and
discrete values (such as user=2, country=FR
or again t ime if the category is continuous). We
denote by NV the number of possible entities, num-
ber them from 1 to N. The DeepFM model we
are describing will learn an embedding for each of
those entities!.

Each instance can be encoded as a sparse vec-
tor of size N: each component will be set at
a certain value (for example, 1 if the category of
the corresponding entity is discrete, the value it-
self if it is continuous, and O if the entity is not
present in the observation). For each instance, our
model will output a probability p(x) = ¥(yray +
YDNN), where v is a link function such as the
sigmoid o or the cumulative distribution function
(CDF) ® of the standard normal distribution.

The DeepFM model is made of two compo-
nents, the FM component and the Deep compo-
nent.

3.1 FM component

Given an embedding size d € N, the output of a
factorization machine is the following:

> wpwi(vg, vr)

N
Yrm = Z WgTf +
k=1 1<k<I<N

The first term shows that a bias wp € R is
learned for each entity k. The second term models
the pairwise interactions between entities by learn-
ing a vector vy, € R for each entity k.

'The original DeepFM paper (Guo et al., 2017) chooses
fields and features in lieu of categories or entities, but we
prefer to use our own formulation (Vie and Kashima, 2018)
because we usually agree with ourselves.

3.1.1 Relation to existing student models

If d = 0 and v is the sigmoid function o, p(x) =
o({w, x)) and the FM component behaves like lo-
gistic regression.

In particular, if there are two fields users (of n
possible values) and items, then each instance en-
coding x;; of user 7 and item j is a concatena-
tion of two one-hot vectors, and p(x;;) = o(w; +
Wp+j) = o(0; — dj) for appropriate values of w,
which means the Rasch model is recovered.

As pointed out by Settles et al. (2018), their
baseline model is a logistic regression with side
information, which makes it similar to an additive
factor model. To see more connections between
our FM component and existing educational data
mining models, see Vie and Kashima (2018).

3.2 Deep component

The deep component is a L-layer feedforward neu-
ral network that outputs:

ypnn = ReLU(W E) gD 4 (1))
where each layer 0 < £ < L verifies:

oD = ReLU(W D a(® 1 (0

for learned parameters W, a, b for each layer, and
the first layer is given by the corresponding v;,
embeddings of the activated entities (the ones for
each category ¢ = 1, ..., C, which correspond to
the nonzero entries of x):

0

a’ = (Vig,...,Vig)-

In order to select the hyperparameters, we fol-
lowed the instructions of (Guo et al., 2017) and the

default values of the available implementation on
GitHub?.

3.3 Training

Training is performed by minimizing the log
loss of the output probabilities compared to the
true outcomes of the students over the tokens.
For all models trained, the optimizer was Adam
(Kingma and Ba, 2014), with learning rate v =
10~2 and minibatches of size 1024.

4 Encoding the Duolingo Dataset

4.1 Fundamental, discrete categories

Fundamental categories (<fundamental>)re-
fer to the features that have discrete values, such as

Zhttps://github.com/ChenglongChen/tensorflow-DeepFM

user (which refer to the user ID) or countries
(which can be in a many-to-many relationship).
user e countries
token e client
part_of_ speech e session
dependency_labele format

exercise_index

4.2 Noisy discrete categories

Duolingo was providing the SyntaxNet features
(morphosyntactic rules) such as:

e Definite e PronType
e Gender e Mood

e Number e Tense

e fPOS e VerbForm
® Person

We call them noisy (<noisy> below), be-
cause they are the output of another algorithm.
Also, not all of them were specified, there were
some missing entries.

4.3 Continuous categories

e time for answering the question
e days since when the user subscribed the
Duolingo platform.

4.4 Encoding

In the baseline model provided by Duolingo, all
fundamental features were encoded as a concate-
nation of n-hot encoders’. Then they used logistic
regression and achieved AUC 0.772.

Here are the models we considered.

e IRT: user + token,d =0

e Logistic regression
<fundamental>

Vanilla FM: <fundamental>
DeepFM: <fundamental>
DeepFM*: <fundamental> +
<noisy> + <continuous>

baseline:

The implementation of Deep Factorization Ma-
chines we used needed a concatenation of one-hot
encoders. So we picked the first country among
the list of countries for each instance. Also, it
could not handle missing entries, so for the noisy
partial categories, we used a None entity.

3For this reason, the continuous features could not be used
for the baseline.

ACC AUC NLL F1
IRT + attempts 0.833 0.739 0.411
Basic IRT 0.838 0.752 0.399
LR baseline 0.838 0.772 0.391 0.284
VanillaFM 0.824 0.773 0.414
DeepFM* 0.811 0.382
DeepFM 0.815 0.329

Table 1: Performance of all tested algorithms on the
en_es dataset.

5 Results

We first tried different models on a validation set.
All models were trained using 500 epochs for the
vanilla FM, or 100 epochs for DeepFM with early
stopping, and refit on the validation set.

5.1 On validation set

A vanilla FM was used considering ¢ = ® the
CDF of the standard normal distribution as link
function, like in the implementation of* (Rendle,
2012). Then, for our experiments, we used the
TensorFlow implementation of DeepFM provided
by Alibaba on GitHub’. Our encoding is available
on GitHub®.

Vanilla FM had comparable performance of
the LR baseline. It agrees with the findings of
Vie and Kashima (2018) that a bigger dimension
may not necessarily help.

5.2 On test set

The DeepFM model managed to improve the base-
line by 3 points AUC. We got AUC 0.815, while
the top performing solution had AUC 0.861.

Our best performing model was DeepFM: us-
ing only the discrete features, train a model of
latent embedding size 10 during a fixed number
of epochs (50). DeepFM* using all features was
slightly worse.

6 Further Work

We could embed the dependency graph provided
by Duolingo in the encoding of the vanilla FM.

Ensemble methods such as xgboost
(Chen and Guestrin, 2016) could be consid-
ered, as typically encountered in challenges.

*http://www.libfm.org
>https://github.com/ChenglongChen/tensorflow-DeepFM
®https://github.com/jilljenn/ktm

Here we want to combine information of the
student which is quite poor (almost only their
outcomes), compared to the knowledge of tokens
(syntactic trees, or word2vec, etc.). This is why
we could use extra embeddings, such as a LSTM
encoding of the sentence as feature for the token.

The performance of DeepFM* that was using
all features was slightly worse than DeepFM that
was limited to the fundamental features. We might
mitigate this problem by using a field-aware fac-
torization machine (Juan et al., 2016) that learns
a parameter per category of feature in order to
draw more importance on some category (such as
user) than others (such as date).

7 Conclusion

In this paper, we showed how to use deep factor-
ization machines for knowledge tracing. Our find-
ings show interesting combinations of features, to-
gether with embeddings provided by deep neural
networks. In some way, it shows how to learn
dense embeddings from the sparse features typi-
cally encountered in learning platforms.

References

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowl-
edge discovery and data mining, pages 785-794.
ACM.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen An-
derson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender sys-
tems. In Proceedings of the 1st Workshop on Deep
Learning for Recommender Systems, pages 7—10.
ACM.

Albert T Corbett and John R Anderson. 1994. Knowl-
edge tracing: Modeling the acquisition of procedural
knowledge. User modeling and user-adapted inter-
action, 4(4):253-278.

Michel C. Desmarais and Ryan S. J. D. Baker. 2012. A
review of recent advances in learner and skill model-
ing in intelligent learning environments. User Mod-
eling and User-Adapted Interaction, 22(1-2):9-38.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhen-
guo Li, and Xiuqiang He. 2017. Deepfm: a
factorization-machine based neural network for ctr
prediction. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence, pages
1725-1731. AAAI Press.

Ronald K. Hambleton, Hariharan Swaminathan, and
H. Jane Rogers. 1991. Fundamentals of item re-
sponse theory. Sage.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and
Chih-Jen Lin. 2016. Field-aware factorization ma-
chines for ctr prediction. In Proceedings of the 10th
ACM Conference on Recommender Systems, pages
43-50. ACM.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Behrouz Minaei-Bidgoli, Deborah A Kashy, Gerd Ko-
rtemeyer, and William F Punch. 2003. Predicting
student performance: an application of data mining
methods with an educational web-based system. In
Frontiers in education, 2003. FIE 2003 33rd annual,
volume 1, pages T2A-13. IEEE.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya
Ganguli, Mehran Sahami, Leonidas J Guibas, and
Jascha Sohl-Dickstein. 2015. Deep knowledge trac-
ing. In Advances in Neural Information Processing
Systems (NIPS), pages 505-513.

Steffen Rendle. 2012.
Factorization machines with libfm. ACM Transac-
tions on Intelligent Systems and Technology (TIST),
3(3):57:1-57:22.

B. Settles, C. Brust, E. Gustafson, M. Hagiwara, and
N. Madnani. 2018. Second language acquisition
modeling. In Proceedings of the NAACL-HLT Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications (BEA). ACL.

Jill-Jénn Vie and Hisashi
Knowledge tracing machines.

Kashima. 2018.

Kevin H. Wilson, Yan Karklin, Bojian Han, and
Chaitanya Ekanadham. 2016. Back to the basics:
Bayesian extensions of IRT outperform neural net-
works for proficiency estimation. In Proceedings
of the 9th International Conference on Educational
Data Mining (EDM), pages 539-544.

https://doi.org/10.1145/2168752.2168771
https://github.com/jilljenn/ktm/blob/master/poster/ktm-poster.pdf

