
Second Language Acquisition Modeling: An Ensemble Approach

Anton Osika, Susanna Nilsson, Andrii Sydorchuk, Faruk Sahin, Anders Huss

Sana Labs, Nybrogatan 8, 114 34 Stockholm, Sweden

{anton, susanna, andrii, faruk, anders}@sanalabs.com

Abstract

Accurate prediction of students knowledge is

a fundamental building block of personalized

learning systems. Here, we propose a novel

ensemble model to predict student knowl-

edge gaps. Applying our approach to student

trace data from the online educational platform

Duolingo we achieved highest score on both

evaluation metrics for all three datasets in the

2018 Shared Task on Second Language Acqui-

sition Modeling. We describe our model and

discuss relevance of the task compared to how

it would be setup in a production environment

for personalized education.

1 Introduction

Understanding how students learn over time holds

the key to unlock the full potential of adaptive

learning. Indeed, personalizing the learning ex-

perience, so that educational content is recom-

mended based on individual need in real time,

promises to continuously stimulate motivation

and the learning process (Bauman and Tuzhilin,

2014a). Accurate detection of students’ knowl-

edge gaps is a fundamental building block of per-

sonalized learning systems (Bauman and Tuzhilin,

2014b) (Lindsey et al., 2014). A number of ap-

proaches exists for modeling student knowledge

and predicting student performance on future ex-

ercises including IRT (Lord, 1952), BKT (David

et al., 2016) and DKT (Piech et al., 2015). Here we

propose an ensemble approach to predict student

knowledge gaps which achieved highest score on

both evaluation metrics for all three datasets in

the 2018 Shared Task on Second Language Ac-

quisition Modeling (SLAM) (Settles et al., 2018).

We analyze in what cases our models’ predictions

could be improved and discuss the relevance of the

task setup for real-time delivery of personalized

content within an educational setting.

2 Data and Evaluation Setup

The 2018 Shared Task on SLAM provides student

trace data from users on the online educational

platform Duolingo (Settles et al., 2018). Three

different datasets are given representing users re-

sponses to exercises completed over the first 30

days of learning English, French and Spanish as

a second language. Common for all exercises is

that the user responds with a sentence in the lan-

guage learnt. Importantly, the raw input sentence

from the user is not available but instead the best

matching sentence among a set of correct answer

sentences. The prediction task is to predict the

word-level mistakes made by the user, given the

best matching sentence and a number of additional

features provided. The matching between user re-

sponse and correct sentence was derived by the

finite-state transducer method (Mohri, 1997).

All datasets were pre-partitioned into train-

ing, development and test subsets, where approx-

imately the last 10 % of the events for each user

is used for testing and the last 10 % of the remain-

ing events used for development . Target labels for

token level mistakes are provided for the training

and development set but not for the test set. Ag-

gregated metrics for the test set were obtained by

submitting predictions to an evaluation server pro-

vided by Duolingo. The performance for this bi-

nary classification task is measured by area under

the ROC curve (AUC) and F1-score.

Although the dataset provided represents real

user interactions on the Duolingo platform, the

model evaluation setup does not represent a realis-

tic scenario where the predictive modelling would

be used for personalizing the content presented to

a user. The reason for this is threefold: Firstly,

predictions are made given the best matching cor-

rect sentence which would not be known prior to

the user answering the question for questions that

ar
X

iv
:1

80
6.

04
52

5v
1 

 [
cs

.C
L

] 
 9

 J
un

 2
01

8



have multiple correct answers. Secondly, there

are a number of variables available at each point

in time which represent information from the fu-

ture creating a form of data leakage. Finally, the

fact that interactions from each student span all

data partitions means that we can always train

on the same users that the model is evaluated for

and hence there are never first time users, where

we would need to infer student mistakes solely

from sequential behaviour. To estimate predic-

tion performance in an educational production set-

ting where next-step recommendations must be in-

ferred from past observations, the evaluation pro-

cedure would have to be adjusted accordingly.

3 Method

To predict word-level mistakes we build an ensem-

ble model which combines the predictions from

a Gradient Boosted Decision Tree (GBDT) and a

recurrent neural network model (RNN). Our rea-

soning behind this approach lies in the observa-

tion that RNNs have been shown to achieve good

results for sequential prediction tasks (Piech et al.,

2015) whereas GBDTs have consistently achieved

state of the art results on various benchmarks for

tabular data (Li, 2012). Even though the data in

this case is fundamentally sequential, the number

of features and the fact that interactions for each

user are available during training make us expect

that both models will generate accurate predic-

tions. Details of our model implementations are

given below.

3.1 The Recurrent Neural Network

The recurrent neural network model that we use is

a generalisation of the model introduced by Piech

(2015), based on the popular LSTM architecture,

with the following key modifications:

• All available categorical and numerical fea-

tures are fed as input to the network and at

multiple input points in the graph of the net-

work (see A.1)

• The network operates on a word level, where

words from different sentences are concate-

nated to form a single sequence

• Information is propagated backward (as well

as forward) in time, making it possible to pre-

dict the correctness of a word given all the

surrounding words within the sentence

• Multiple ordinary- as well as recurrent lay-

ers are stacked, with the information from

each level cascaded through skip-connections

(Bishop, 1995) to form the final prediction

In model training, subsequences of up to 256

interactions are sampled from each user history

in the train dataset, and only the second half of

each subsequence is included in the loss function.

The binary target variable representing word-level

mistakes is expanded to a categorical variable and

set to unknown for the second half of each subse-

quence in order to match the evaluation setup.

Log loss of predictions for each subsequence

is minimised using adaptive moment estimation

(Kingma and Ba, 2014) with a batch size of

32. Regularisation with dropout (Srivastava et al.,

2014) and L2 regularisation (Schmidhuber, 2014)

is used for embeddings, recurrent and feed for-

ward layers. Data points are used once over

each of 80 epochs, and performance continuously

evaluated on 70 % of the dev data after each

epoch. The model with highest performance over

all epochs is then selected after training has fin-

ished. Finally, Gaussian Process Bandit Optimiza-

tion (Desautels et al., 2014) is used to tune the

hyperparameters learning rate, number of units

in each layer, dropout probability and L2 coeffi-

cients.

3.2 The Gradient Boosted Decision Tree

The decision tree model is built using the Light-

GBM framework (Ke et al., 2017) which imple-

ments a way of optimally partitioning categori-

cal features, leaf-wise tree growth, as well as his-

togram binning for continuous variables (Titov,

2018). In addition to the variables provided in the

student trace data we engineer a number of fea-

tures which we anticipate should have relevance

for predicting the word level mistakes

• How many times the current token has been

practiced

• Time since token was last seen

• Position index of token within the best

matching sentence

• The total number of tokens in the best match-

ing sentence

• Position index of exercise within session



• Preceding token

• A unique identifier of the best matching sen-

tence as a proxy for exercise id

Optimal model parameters are learned through

a grid search by training the model on the training

set and evaluating on the development set to opti-

mize AUC. The optimal GBDT parameter settings

for each dataset can be found in the Supplemen-

tary Material A.2.

3.3 Ensemble Approach

The predictions generated by the recurrent neural

network model and the GBDT model are com-

bined through a weighted average. We train each

model using its optimal hyperparameter setting

on the train dataset and generate predictions on

the dev set. The optimal ensemble weights are

then found by varying the proportion of each

model prediction and choosing the weight combi-

nation which yields optimal AUC score (Figure 1).

Finally, the RNN and GBDT were trained using

their respective optimal hyperparameter settings

on the training and development datasets to gen-

erate predictions on the test sets. The individual

model test set predictions were then combined us-

ing the optimal ensemble weights to generate the

final test set predictions for task submission.

0.0 0.2 0.4 0.6 0.8 1.0
GBDT weighting factor

0.840

0.845

0.850

0.855

0.860

A
U

C

Figure 1: Ensemble model performance as a func-

tion of the GBDT ensemble weight parameter for the

en es dataset. 0.0 is equivalent to using only the neu-

ral network model while 1.0 is equivalent to using only

GBDT.

4 Discussion

Our ensemble approach yielded superior predic-

tion performance on the test set compared to the

individual performances of the ensemble compo-

nents (Table 1). The F1 scores of our ensemble

are reported in Table 2. We note that although the

within-ensemble prediction correlations are high

(Table 3), the prediction diversity evidently suf-

fices for the ensemble combination to outperform

the underlying models. This suggests that the

RNN and the GBDT differ in performance on dif-

ferent word mistakes. Most likely, the temporal

dynamics modelled by the neural network model

complement the GBDT predictions enabling the

ensemble to generalise better to unseen user events

than its component parts. Notably, none of our in-

dividual models would have yielded first place in

the Shared Task.

Model fr_en es_en en_es

RNN 0.841 0.830 0.851

GBDT 0.853 0.836 0.856

Ensemble 0.857 0.838 0.861

Table 1: Model AUC scores on the test partition for all

datasets.

fr_en es_en en_es

Ensemble 0.573 0.530 0.561

Table 2: Model F1 scores on the test partition for all

datasets.

Data partition fr_en es_en en_es

dev 0.881 0.901 0.896

test 0.884 0.894 0.898

Table 3: Pearson correlations coefficients between the

GBDT and RNN predictions on the dev and test set for

all datasets.

4.1 Feature Importance

Given the predictive power of our model we can

use the model components to gain insight into

what features are most valuable when inferring

student mistake patterns. When ranking GBDT

features by information gain, we note that 4 out

of 5 features overlap between the three datasets

(Figure 4). The unique user identifier is ranked as

second on all datasets, suggesting that very often a

separate subtree can be built for each user. This

implies that generalisation to new users for the

GBDT model would result in performance degra-

dation.

4.2 Relevance for Real Time Prediction

Delivery

In the setup at hand we have a unique identifier

and most of the data available for each user dur-

ing model training. This means that for example

the GBDT can naturally build a subtree represent-

ing each individual user. For the model evaluation



fr_en es_en en_es

token token token

user user user

format format format

exercise id exercise id exercise id

time token attempt time

Table 4: The top 5 GBDT model features by informa-

tion gain.

setup where there is no need to generalize to new

users this is not an issue. In a production setting

however, the model has to serve new users, which

would then have to be handled separately. Fre-

quent retraining of the model would also be nec-

essary to prevent performance degradation. This

means that the unique user identifier is typically

replaced by engineered features that represent the

user history. An alternative would be to apply state

based models such as Recurrent Neural Networks

which by default encode user history without com-

putational overhead or extra engineering effort.

4.3 Error Analysis

Although the predictive power of our model is

high, there are mistake patterns that our model is

not able to capture. The following sections cover

two ways of characterizing subsets of the data

where the model performs worse than on average.

These observations could potentially be used to

improve the overall model performance.

4.3.1 Performance Decay over Time

Due to the sequential partitioning of the training,

development and test subsets, the model does not

have information about each user’s mistakes for

the most recent events. In Figure 2 we note that

this lack of information results in a degradation

in performance as the predictions get further away

from the horizon of labeled data points. Effects

which drive this phenomenon include:

1. The data is non-stationary, i.e. the distribu-

tion it comes from varies over time

2. The model has seen less relevant information

about each user when the prediction is far

away from the label horizon

3. The model is overconfident far away from the

label horizon since it has never experienced

missing information on a user level during

training

We note that 3 would not be an issue if the

model setup did not include a unique user iden-

tifier, which would be desirable in a production

setting. For models that do include a unique user

identifier as a feature, one way to potentially over-

come this performance degradation would be to

systematically sample subsequences of the train-

ing dataset on a user level, train models separately

for each sample and then combine the models. In

this way each submodel should be less reliant on

the most recent exercise answers at any point in

time and thus generalise better to the evaluation

setup. This is in effect bagging with a sampling

strategy taking consecutive time steps into account

(Breiman, 1996). We did not attempt to apply this

error correction here but leave it for future work.

0.28

0.29

Lo
g 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of max time

100000

200000

300000

C
ou

nt

Figure 2: Performance decays as instances further

away from the label horizon are considered. Log Loss

is computed considering only instances before a given

fraction of time, where time is normalized by the max-

imum time for each user. Here performance decay for

the en es dataset.

4.3.2 The Influence of Rare Words

We note that the 4% of instances with the least

common words contribute to 10% of the predic-

tion error measured in Log Loss, Figure 3. This

insight gives opportunity to increase prediction

performance. Although not attempted here, future

work includes building another ensemble compo-

nent specialized in predicting mistake patterns of

words not previously encountered.

In conclusion, we have developed an ensem-

ble approach to modeling knowledge gaps applied

here within a second language acquisition setting.

Albeit not evaluated in a realistic production envi-

ronment, our ensemble model achieves high pre-



0.3

0.4

0.5

Lo
g 

Lo
ss

0 500 1000 1500 2000
Considered tokens

0

200000

400000

C
ou

nt

Figure 3: Log loss is high when considering only the x

most rare tokens and low when considering all tokens

on the en es dev partition.

dictive performance and allows insights about stu-

dent mistake patterns. Thus our approach provides

a foundation for further research on knowledge ac-

quisition modeling applicable to any educational

domain.

References

K. Bauman and A. Tuzhilin. 2014a. Recommending
learning materials to students by identifying their
knowledge gaps. In RecSys 2014 Poster Proceed-
ings, pages 6–10, Foster City, Silicon Valley, USA.

Konstantin Bauman and Alexander Tuzhilin. 2014b.
Recommending learning materials to students by
identifying their knowledge gaps. In RecSys Posters.

Christopher M Bishop. 1995. Neural networks for pat-
tern recognition. Oxford university press.

Leo Breiman. 1996. Bagging predictors. Machine
Learning, 24(2):123–140.

Yossi Ben David, Avi Segal, and Ya’akov Kobi Gal.
2016. Sequencing educational content in class-
rooms using bayesian knowledge tracing. In Pro-
ceedings of the sixth international conference on
Learning Analytics & Knowledge, pages 354–363.
ACM.

Thomas Desautels, Andreas Krause, and Joel W. Bur-
dick. 2014. Parallelizing exploration-exploitation
tradeoffs in gaussian process bandit optimization.
Journal of Machine Learning Research, 15:4053–
4103.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. 2017. Lightgbm: A highly efficient gradient
boosting decision tree. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 30, pages 3146–3154.
Curran Associates, Inc.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Ping Li. 2012. Robust logitboost and adap-
tive base class (abc) logitboost. arXiv preprint
arXiv:1203.3491.

Robert V Lindsey, Jeffery D Shroyer, Harold Pashler,
and Michael C Mozer. 2014. Improving students
long-term knowledge retention through personalized
review. Psychological science, 25(3):639–647.

Frederic Lord. 1952. A theory of test scores. Psycho-
metric monographs.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational lin-
guistics, 23(2):269–311.

Chris Piech, Jonathan Spencer, Jonathan Huang, Surya
Ganguli, Mehran Sahami, Leonidas J. Guibas, and
Jascha Sohl-Dickstein. 2015. Deep knowledge trac-
ing. CoRR, abs/1506.05908.

Jürgen Schmidhuber. 2014. Deep learning in neural
networks: An overview. CoRR, abs/1404.7828.

B. Settles, C. Brust, E. Gustafson, M. Hagiwara, and
N. Madnani. 2018. Second language acquisition
modeling. In Proceedings of the NAACL-HLT Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications (BEA). ACL.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Nikita Titov. 2018. LightGBM Features.
http://lightgbm.readthedocs.io/

en/latest/Features.html. [Online;
accessed 23-March-2018].

https://doi.org/10.1023/A:1018054314350
http://jmlr.org/papers/v15/desautels14a.html
http://jmlr.org/papers/v15/desautels14a.html
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1506.05908
http://arxiv.org/abs/1506.05908
http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://lightgbm.readthedocs.io/en/latest/Features.html
http://lightgbm.readthedocs.io/en/latest/Features.html


A Supplemental Material

A.1 The recurrent neural network model

design

Our neural network model desisgn is described be-

low:

1. For each word the network takes as input all

available categorical features, excluding mor-

phological features for each word. The exclu-

sion was motivated by the fact that predictive

ability added by morphological features was

low when evaluated by a decision tree model.

2. Preprocessed numerical features for days and

time are concatenated to an input vector.

(Preprocessing in this case means to normal-

ize to mean zero, variance 1, remove outliers

that are larger than 100, and concatenate the

value itself with the value exponentiated to

0.5 as well as 2.0)

3. The categories token, part of speech, format,

correct and exercise id (as described in 3.2),

are each mapped to an embedding vector of

length 15.

4. The above categorical features are further

combined with the feature correct by using

the cartesian product, and then mapping each

category to an embedding vector.

5. All categorical embeddings and numerical

features are concatenated together forming an

input vector.

6. The input vector is fed through a two layer

bidirectional recurrent neural network, where

the input to both of the layers are summed

with the output, forming a user state vector.

7. Another input vector is formed by concate-

nating categorical embeddings for the fea-

tures token, part of speech, format, depen-

dency label, dependency token, user id as

well as preprocessed numerical features.

8. The user state vector is then projected to two

scalars. This is done by dot multiplying it

with a vector of trainable variables, as well as

dot multiplying it with the second input vec-

tor from step 7. The second part accounts for

the original operation done by (Piech et al.,

2015).

9. We furthermore compute one scalar for each

categorical feature, that is specific for the cat-

egory of the feature, similar to a logistic re-

gression model.

10. Finally, the second input vector together with

all computed scalars are concatenated and fed

to a 3 layer feed forward neural network.

11. The sum of all scalar values and the output

of the feed forward network forms our logit,

which is fed through a sigmoid function out-

putting the probability of a token level mis-

take.

A.2 GBDT Hyperparameters

Model parameter fr en es en en es

num leaves 2400 2700 2400

n estimators 5744 2518 3203

learning rate 0.002 0.005 0.005

feature fraction 0.5 0.45 0.4

early stopping round 300 100 100

Table 5: Optimal GBDT parameters for all three

datasets.


