arXiv:1806.04525v1 [cs.CL] 9 Jun 2018

Second Language Acquisition Modeling: An Ensemble Approach

Anton Osika, Susanna Nilsson, Andrii Sydorchuk, Faruk Sahin, Anders Huss
Sana Labs, Nybrogatan 8, 114 34 Stockholm, Sweden
{anton, susanna, andrii, faruk, anders}@sanalabs.com

Abstract

Accurate prediction of students knowledge is
a fundamental building block of personalized
learning systems. Here, we propose a novel
ensemble model to predict student knowl-
edge gaps. Applying our approach to student
trace data from the online educational platform
Duolingo we achieved highest score on both
evaluation metrics for all three datasets in the
2018 Shared Task on Second Language Acqui-
sition Modeling. We describe our model and
discuss relevance of the task compared to how
it would be setup in a production environment
for personalized education.

1 Introduction

Understanding how students learn over time holds
the key to unlock the full potential of adaptive
learning. Indeed, personalizing the learning ex-
perience, so that educational content is recom-
mended based on individual need in real time,
promises to continuously stimulate motivation
and the learning process (Bauman and Tuzhilin,
2014a). Accurate detection of students’ knowl-
edge gaps is a fundamental building block of per-
sonalized learning systems (Bauman and Tuzhilin,
2014b) (Lindsey et al., 2014). A number of ap-
proaches exists for modeling student knowledge
and predicting student performance on future ex-
ercises including IRT (Lord, 1952), BKT (David
etal.,2016) and DKT (Piech et al., 2015). Here we
propose an ensemble approach to predict student
knowledge gaps which achieved highest score on
both evaluation metrics for all three datasets in
the 2018 Shared Task on Second Language Ac-
quisition Modeling (SLAM) (Settles et al., 2018).
We analyze in what cases our models’ predictions
could be improved and discuss the relevance of the
task setup for real-time delivery of personalized
content within an educational setting.

2 Data and Evaluation Setup

The 2018 Shared Task on SLAM provides student
trace data from users on the online educational
platform Duolingo (Settles et al., 2018). Three
different datasets are given representing users re-
sponses to exercises completed over the first 30
days of learning English, French and Spanish as
a second language. Common for all exercises is
that the user responds with a sentence in the lan-
guage learnt. Importantly, the raw input sentence
from the user is not available but instead the best
matching sentence among a set of correct answer
sentences. The prediction task is to predict the
word-level mistakes made by the user, given the
best matching sentence and a number of additional
features provided. The matching between user re-
sponse and correct sentence was derived by the
finite-state transducer method (Mohri, 1997).

All datasets were pre-partitioned into train-
ing, development and test subsets, where approx-
imately the last 10 % of the events for each user
is used for testing and the last 10 % of the remain-
ing events used for development . Target labels for
token level mistakes are provided for the training
and development set but not for the test set. Ag-
gregated metrics for the test set were obtained by
submitting predictions to an evaluation server pro-
vided by Duolingo. The performance for this bi-
nary classification task is measured by area under
the ROC curve (AUC) and F1-score.

Although the dataset provided represents real
user interactions on the Duolingo platform, the
model evaluation setup does not represent a realis-
tic scenario where the predictive modelling would
be used for personalizing the content presented to
a user. The reason for this is threefold: Firstly,
predictions are made given the best matching cor-
rect sentence which would not be known prior to
the user answering the question for questions that

have multiple correct answers. Secondly, there
are a number of variables available at each point
in time which represent information from the fu-
ture creating a form of data leakage. Finally, the
fact that interactions from each student span all
data partitions means that we can always train
on the same users that the model is evaluated for
and hence there are never first time users, where
we would need to infer student mistakes solely
from sequential behaviour. To estimate predic-
tion performance in an educational production set-
ting where next-step recommendations must be in-
ferred from past observations, the evaluation pro-
cedure would have to be adjusted accordingly.

3 Method

To predict word-level mistakes we build an ensem-
ble model which combines the predictions from
a Gradient Boosted Decision Tree (GBDT) and a
recurrent neural network model (RNN). Our rea-
soning behind this approach lies in the observa-
tion that RNNs have been shown to achieve good
results for sequential prediction tasks (Piech et al.,
2015) whereas GBDTs have consistently achieved
state of the art results on various benchmarks for
tabular data (Li, 2012). Even though the data in
this case is fundamentally sequential, the number
of features and the fact that interactions for each
user are available during training make us expect
that both models will generate accurate predic-
tions. Details of our model implementations are
given below.

3.1 The Recurrent Neural Network

The recurrent neural network model that we use is
a generalisation of the model introduced by Piech
(2015), based on the popular LSTM architecture,
with the following key modifications:

e All available categorical and numerical fea-
tures are fed as input to the network and at
multiple input points in the graph of the net-
work (see A.1)

e The network operates on a word level, where
words from different sentences are concate-
nated to form a single sequence

e Information is propagated backward (as well
as forward) in time, making it possible to pre-
dict the correctness of a word given all the
surrounding words within the sentence

e Multiple ordinary- as well as recurrent lay-
ers are stacked, with the information from
each level cascaded through skip-connections
(Bishop, 1995) to form the final prediction

In model training, subsequences of up to 256
interactions are sampled from each user history
in the train dataset, and only the second half of
each subsequence is included in the loss function.
The binary target variable representing word-level
mistakes is expanded to a categorical variable and
set to unknown for the second half of each subse-
quence in order to match the evaluation setup.

Log loss of predictions for each subsequence
is minimised using adaptive moment estimation
(Kingma and Ba, 2014) with a batch size of
32. Regularisation with dropout (Srivastava et al.,
2014) and L2 regularisation (Schmidhuber, 2014)
is used for embeddings, recurrent and feed for-
ward layers. Data points are used once over
each of 80 epochs, and performance continuously
evaluated on 70 % of the dev data after each
epoch. The model with highest performance over
all epochs is then selected after training has fin-
ished. Finally, Gaussian Process Bandit Optimiza-
tion (Desautels et al., 2014) is used to tune the
hyperparameters learning rate, number of units
in each layer, dropout probability and L2 coeffi-
cients.

3.2 The Gradient Boosted Decision Tree

The decision tree model is built using the Light-
GBM framework (Ke et al., 2017) which imple-
ments a way of optimally partitioning categori-
cal features, leaf-wise tree growth, as well as his-
togram binning for continuous variables (Titov,
2018). In addition to the variables provided in the
student trace data we engineer a number of fea-
tures which we anticipate should have relevance
for predicting the word level mistakes

e How many times the current token has been
practiced

e Time since token was last seen

e Position index of token within the best
matching sentence

e The total number of tokens in the best match-
ing sentence

e Position index of exercise within session

e Preceding token

e A unique identifier of the best matching sen-
tence as a proxy for exercise id

Optimal model parameters are learned through
a grid search by training the model on the training
set and evaluating on the development set to opti-
mize AUC. The optimal GBDT parameter settings
for each dataset can be found in the Supplemen-
tary Material A.2.

3.3 Ensemble Approach

The predictions generated by the recurrent neural
network model and the GBDT model are com-
bined through a weighted average. We train each
model using its optimal hyperparameter setting
on the train dataset and generate predictions on
the dev set. The optimal ensemble weights are
then found by varying the proportion of each
model prediction and choosing the weight combi-
nation which yields optimal AUC score (Figure 1).

Finally, the RNN and GBDT were trained using
their respective optimal hyperparameter settings
on the training and development datasets to gen-
erate predictions on the test sets. The individual
model test set predictions were then combined us-
ing the optimal ensemble weights to generate the
final test set predictions for task submission.

0.860

0.855
O
D 0.850
<

0.845

0.840
0.0 0.2 0.4 0.6 0.8 1.0

GBDT weighting factor

Figure 1: Ensemble model performance as a func-
tion of the GBDT ensemble weight parameter for the
en_es dataset. 0.0 is equivalent to using only the neu-
ral network model while 1.0 is equivalent to using only
GBDT.

4 Discussion

Our ensemble approach yielded superior predic-
tion performance on the test set compared to the
individual performances of the ensemble compo-
nents (Table 1). The F1 scores of our ensemble
are reported in Table 2. We note that although the
within-ensemble prediction correlations are high

(Table 3), the prediction diversity evidently suf-
fices for the ensemble combination to outperform
the underlying models. This suggests that the
RNN and the GBDT differ in performance on dif-
ferent word mistakes. Most likely, the temporal
dynamics modelled by the neural network model
complement the GBDT predictions enabling the
ensemble to generalise better to unseen user events
than its component parts. Notably, none of our in-
dividual models would have yielded first place in
the Shared Task.

Model fr_en | es_en | en_es
RNN 0.841 0.830 0.851
GBDT 0.853 0.836 0.856
Ensemble | 0.857 0.838 0.861

Table 1: Model AUC scores on the test partition for all
datasets.

fr_en

0.573

es_en

0.530

en_es

0.561

Ensemble

Table 2: Model F1 scores on the test partition for all
datasets.

Data partition | fr_en | es_en | en_es
dev 0.881 0.901 0.896
test 0.884 0.894 0.898

Table 3: Pearson correlations coefficients between the
GBDT and RNN predictions on the dev and test set for
all datasets.

4.1 Feature Importance

Given the predictive power of our model we can
use the model components to gain insight into
what features are most valuable when inferring
student mistake patterns. When ranking GBDT
features by information gain, we note that 4 out
of 5 features overlap between the three datasets
(Figure 4). The unique user identifier is ranked as
second on all datasets, suggesting that very often a
separate subtree can be built for each user. This
implies that generalisation to new users for the
GBDT model would result in performance degra-
dation.

4.2 Relevance for Real Time Prediction
Delivery

In the setup at hand we have a unique identifier
and most of the data available for each user dur-
ing model training. This means that for example
the GBDT can naturally build a subtree represent-
ing each individual user. For the model evaluation

fr_en es_en en_es
token token token

user user user
format format format
exercise id | exercise id exercise id
time token attempt | time

Table 4: The top 5 GBDT model features by informa-
tion gain.

setup where there is no need to generalize to new
users this is not an issue. In a production setting
however, the model has to serve new users, which
would then have to be handled separately. Fre-
quent retraining of the model would also be nec-
essary to prevent performance degradation. This
means that the unique user identifier is typically
replaced by engineered features that represent the
user history. An alternative would be to apply state
based models such as Recurrent Neural Networks
which by default encode user history without com-
putational overhead or extra engineering effort.

4.3 Error Analysis

Although the predictive power of our model is
high, there are mistake patterns that our model is
not able to capture. The following sections cover
two ways of characterizing subsets of the data
where the model performs worse than on average.
These observations could potentially be used to
improve the overall model performance.

4.3.1 Performance Decay over Time

Due to the sequential partitioning of the training,
development and test subsets, the model does not
have information about each user’s mistakes for
the most recent events. In Figure 2 we note that
this lack of information results in a degradation
in performance as the predictions get further away
from the horizon of labeled data points. Effects
which drive this phenomenon include:

1. The data is non-stationary, i.e. the distribu-
tion it comes from varies over time

2. The model has seen less relevant information
about each user when the prediction is far
away from the label horizon

3. The model is overconfident far away from the
label horizon since it has never experienced
missing information on a user level during
training

We note that 3 would not be an issue if the
model setup did not include a unique user iden-
tifier, which would be desirable in a production
setting. For models that do include a unique user
identifier as a feature, one way to potentially over-
come this performance degradation would be to
systematically sample subsequences of the train-
ing dataset on a user level, train models separately
for each sample and then combine the models. In
this way each submodel should be less reliant on
the most recent exercise answers at any point in
time and thus generalise better to the evaluation
setup. This is in effect bagging with a sampling
strategy taking consecutive time steps into account
(Breiman, 1996). We did not attempt to apply this
error correction here but leave it for future work.

» 0.29
[}
o
—
jod)
o
—
0.28
300000
=
3 200000
O
100000
0.0 0.2 0.4 06 0.8 1.0
Fraction of max time
Figure 2: Performance decays as instances further

away from the label horizon are considered. Log Loss
is computed considering only instances before a given
fraction of time, where time is normalized by the max-
imum time for each user. Here performance decay for
the en_es dataset.

4.3.2 The Influence of Rare Words

We note that the 4% of instances with the least
common words contribute to 10% of the predic-
tion error measured in Log Loss, Figure 3. This
insight gives opportunity to increase prediction
performance. Although not attempted here, future
work includes building another ensemble compo-
nent specialized in predicting mistake patterns of
words not previously encountered.

In conclusion, we have developed an ensem-
ble approach to modeling knowledge gaps applied
here within a second language acquisition setting.
Albeit not evaluated in a realistic production envi-
ronment, our ensemble model achieves high pre-

0.5

Log Loss
o
N

0.3

400000

200000

Count

0 500 1000 1500 2000
Considered tokens

Figure 3: Log loss is high when considering only the z
most rare tokens and low when considering all tokens
on the en_es dev partition.

dictive performance and allows insights about stu-
dent mistake patterns. Thus our approach provides
a foundation for further research on knowledge ac-
quisition modeling applicable to any educational
domain.

References

K. Bauman and A. Tuzhilin. 2014a. Recommending
learning materials to students by identifying their
knowledge gaps. In RecSys 2014 Poster Proceed-
ings, pages 6—10, Foster City, Silicon Valley, USA.

Konstantin Bauman and Alexander Tuzhilin. 2014b.
Recommending learning materials to students by
identifying their knowledge gaps. In RecSys Posters.

Christopher M Bishop. 1995. Neural networks for pat-

tern recognition. Oxford university press.
Leo Breiman. 1996. Bagging predictors. Machine
Learning, 24(2):123-140.

Yossi Ben David, Avi Segal, and Ya’akov Kobi Gal.
2016. Sequencing educational content in class-
rooms using bayesian knowledge tracing. In Pro-
ceedings of the sixth international conference on
Learning Analytics & Knowledge, pages 354-363.
ACM.

Thomas Desautels, Andreas Krause, and Joel W. Bur-
dick. 2014. Parallelizing exploration-exploitation
tradeoffs in gaussian process bandit optimization.
Journal of Machine Learning Research, 15:4053—
4103.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. 2017. Lightgbm: A highly efficient gradient
boosting decision tree. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 30, pages 3146-3154.
Curran Associates, Inc.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Ping Li. 2012. Robust logitboost and adap-
tive base class (abc) logitboost. arXiv preprint
arXiv:1203.3491.

Robert V Lindsey, Jeffery D Shroyer, Harold Pashler,
and Michael C Mozer. 2014. Improving students
long-term knowledge retention through personalized
review. Psychological science, 25(3):639-647.

Frederic Lord. 1952. A theory of test scores. Psycho-
metric monographs.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational lin-
guistics, 23(2):269-311.

Chris Piech, Jonathan Spencer, Jonathan Huang, Surya
Ganguli, Mehran Sahami, Leonidas J. Guibas, and
Jascha Sohl-Dickstein. 2015. Deep knowledge trac-
ing. CoRR, abs/1506.05908.

Jirgen Schmidhuber. 2014. Deep learning in neural
networks: An overview. CoRR, abs/1404.7828.

B. Settles, C. Brust, E. Gustafson, M. Hagiwara, and
N. Madnani. 2018. Second language acquisition
modeling. In Proceedings of the NAACL-HLT Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications (BEA). ACL.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929-1958.

Nikita Titov. 2018. LightGBM Features.
http://lightgbm.readthedocs.io/
en/latest/Features.html. [Online;
accessed 23-March-2018].

https://doi.org/10.1023/A:1018054314350
http://jmlr.org/papers/v15/desautels14a.html
http://jmlr.org/papers/v15/desautels14a.html
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1506.05908
http://arxiv.org/abs/1506.05908
http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://lightgbm.readthedocs.io/en/latest/Features.html
http://lightgbm.readthedocs.io/en/latest/Features.html

A Supplemental Material

A.1 The recurrent neural network model
design

Our neural network model desisgn is described be-
low:

1. For each word the network takes as input all
available categorical features, excluding mor-
phological features for each word. The exclu-
sion was motivated by the fact that predictive
ability added by morphological features was
low when evaluated by a decision tree model.

2. Preprocessed numerical features for days and
time are concatenated to an input vector.
(Preprocessing in this case means to normal-
ize to mean zero, variance 1, remove outliers
that are larger than 100, and concatenate the
value itself with the value exponentiated to
0.5 as well as 2.0)

3. The categories token, part_of_speech, format,
correct and exercise id (as described in 3.2),
are each mapped to an embedding vector of
length 15.

4. The above categorical features are further
combined with the feature correct by using
the cartesian product, and then mapping each
category to an embedding vector.

5. All categorical embeddings and numerical
features are concatenated together forming an
input vector.

6. The input vector is fed through a two layer
bidirectional recurrent neural network, where
the input to both of the layers are summed
with the output, forming a user state vector.

7. Another input vector is formed by concate-
nating categorical embeddings for the fea-
tures token, part_of_speech, format, depen-
dency_label, dependency_token, user_id as
well as preprocessed numerical features.

8. The user state vector is then projected to two
scalars. This is done by dot multiplying it
with a vector of trainable variables, as well as
dot multiplying it with the second input vec-
tor from step 7. The second part accounts for
the original operation done by (Piech et al.,
2015).

9.

10.

11.

We furthermore compute one scalar for each
categorical feature, that is specific for the cat-
egory of the feature, similar to a logistic re-
gression model.

Finally, the second input vector together with
all computed scalars are concatenated and fed
to a 3 layer feed forward neural network.

The sum of all scalar values and the output
of the feed forward network forms our logit,
which is fed through a sigmoid function out-
putting the probability of a token level mis-
take.

A.2 GBDT Hyperparameters

Model parameter frren | es_en | en_es
num_leaves 2400 | 2700 | 2400
n_estimators 5744 | 2518 | 3203
learning_rate 0.002 | 0.005 | 0.005
feature_fraction 0.5 0.45 0.4
early_stopping_round | 300 100 100

Table 5: Optimal GBDT parameters for all three
datasets.

